-- Author: Yuchen Pei (me@ypei.me) import Data.List.Split (splitOn) import Data.Map (Map) import qualified Data.Map as Map exec :: [[Char]] -> Int -> Int -> Map Char Int -> Int exec rom n addr regs | addr >= length rom || addr < 0 = n | op == "set" = exec rom n (addr + 1) (Map.insert dest val regs) | op == "sub" = exec rom n (addr + 1) (Map.insert dest (dval - val) regs) | op == "mul" = exec rom (n + 1) (addr + 1) (Map.insert dest (dval * val) regs) | op == "jnz" = exec rom n (if dval /= 0 then addr + val else addr + 1) regs where ins = rom !! addr op:[dest]:xs = splitOn " " ins dval = getVal [dest] val = getVal $ head xs getVal xs = if head xs `elem` alphabet then regs Map.! (head xs) else read xs isPrime :: Int -> Bool isPrime x = and $ ((/=0) . rem x) <$> [2 .. floor $ sqrt $ fromIntegral x] solve2 = length $ filter (==False) $ isPrime <$> [105700, 105717 .. 122700] -- The last number, 122700 should not be included because according to the assembly code when b == c the program terminates without checking primality of b. But the AOC website only accepted the answer when it is included. alphabet = ['a'..'h'] initRegs :: Map Char Int initRegs = Map.fromList $ zip ['a'..'h'] (cycle [0]) solve1 :: [Char] -> Int solve1 xs = exec (lines xs) 0 0 initRegs input = "set b 57\nset c b\njnz a 2\njnz 1 5\nmul b 100\nsub b -100000\nset c b\nsub c -17000\nset f 1\nset d 2\nset e 2\nset g d\nmul g e\nsub g b\njnz g 2\nset f 0\nsub e -1\nset g e\nsub g b\njnz g -8\nsub d -1\nset g d\nsub g b\njnz g -13\njnz f 2\nsub h -1\nset g b\nsub g c\njnz g 2\njnz 1 3\nsub b -17\njnz 1 -23"