From f0e05fca8553b97f65c3102090848b8c4cf9e609 Mon Sep 17 00:00:00 2001
From: Alec Theriault
\[ + >\[ \int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi} - \]
\(\int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi}\)
\(\int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi}\)normalDensity
- \(\int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi}\)
- \[\int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi}\]\(\int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi}\)
+ \[\int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi}\]