{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} module Haddock.Backends.Xhtml.Specialize ( specialize, specialize' , specializeTyVarBndrs , sugar, rename , freeVariables ) where import Haddock.Syb import Haddock.Types import GHC import Name import FastString import Control.Monad import Control.Monad.Trans.RWS import Data.Data import qualified Data.List as List import Data.Maybe import Data.Map (Map) import qualified Data.Map as Map import Data.Set (Set) import qualified Data.Set as Set -- | Instantiate all occurrences of given name with particular type. specialize :: (Eq name, Typeable name) => Data a => name -> HsType name -> a -> a specialize name details = everywhere $ mkT step where step (HsTyVar name') | name == name' = details step typ = typ -- | Instantiate all occurrences of given names with corresponding types. -- -- It is just a convenience function wrapping 'specialize' that supports more -- that one specialization. specialize' :: (Eq name, Typeable name) => Data a => [(name, HsType name)] -> a -> a specialize' = flip $ foldr (uncurry specialize) -- | Instantiate given binders with corresponding types. -- -- Again, it is just a convenience function around 'specialize'. Note that -- length of type list should be the same as the number of binders. specializeTyVarBndrs :: (Eq name, Typeable name, DataId name) => LHsTyVarBndrs name -> [HsType name] -> HsType name -> HsType name specializeTyVarBndrs bndrs typs = specialize' $ zip bndrs' typs where bndrs' = map (bname . unLoc) . hsq_tvs $ bndrs bname (UserTyVar name) = name bname (KindedTyVar (L _ name) _) = name -- | Make given type use tuple and list literals where appropriate. -- -- After applying 'specialize' function some terms may not use idiomatic list -- and tuple literals resulting in types like @[] a@ or @(,,) a b c@. This -- can be fixed using 'sugar' function, that will turn such types into @[a]@ -- and @(a, b, c)@. sugar :: forall name. (NamedThing name, DataId name) => HsType name -> HsType name sugar = everywhere $ mkT step where step :: HsType name -> HsType name step = sugarTuples . sugarLists sugarLists :: NamedThing name => HsType name -> HsType name sugarLists (HsAppTy (L _ (HsTyVar name)) ltyp) | isBuiltInSyntax name' && strName == "[]" = HsListTy ltyp where name' = getName name strName = occNameString . nameOccName $ name' sugarLists typ = typ sugarTuples :: NamedThing name => HsType name -> HsType name sugarTuples typ = aux [] typ where aux apps (HsAppTy (L _ ftyp) atyp) = aux (atyp:apps) ftyp aux apps (HsParTy (L _ typ')) = aux apps typ' aux apps (HsTyVar name) | isBuiltInSyntax name' && suitable = HsTupleTy HsBoxedTuple apps where name' = getName name strName = occNameString . nameOccName $ name' suitable = case parseTupleArity strName of Just arity -> arity == length apps Nothing -> False aux _ _ = typ -- | Compute arity of given tuple operator. -- -- >>> parseTupleArity "(,,)" -- Just 3 -- -- >>> parseTupleArity "(,,,,)" -- Just 5 -- -- >>> parseTupleArity "abc" -- Nothing -- -- >>> parseTupleArity "()" -- Nothing parseTupleArity :: String -> Maybe Int parseTupleArity ('(':commas) = do n <- parseCommas commas guard $ n /= 0 return $ n + 1 where parseCommas (',':rest) = (+ 1) <$> parseCommas rest parseCommas ")" = Just 0 parseCommas _ = Nothing parseTupleArity _ = Nothing -- | Haskell AST type representation. -- -- This type is used for renaming (more below), essentially the ambiguous (!) -- version of 'Name'. So, why is this 'FastString' instead of 'OccName'? Well, -- it was 'OccName' before, but turned out that 'OccName' sometimes also -- contains namespace information, differentiating visually same types. -- -- And 'FastString' is used because it is /visual/ part of 'OccName' - it is -- not converted to 'String' or alike to avoid new allocations. Additionally, -- since it is stored mostly in 'Set', fast comparison of 'FastString' is also -- quite nice. type NameRep = FastString getNameRep :: NamedThing name => name -> NameRep getNameRep = occNameFS . getOccName nameRepString :: NameRep -> String nameRepString = unpackFS stringNameRep :: String -> NameRep stringNameRep = mkFastString setInternalNameRep :: SetName name => NameRep -> name -> name setInternalNameRep = setInternalOccName . mkVarOccFS setInternalOccName :: SetName name => OccName -> name -> name setInternalOccName occ name = setName nname' name where nname = getName name nname' = mkInternalName (nameUnique nname) occ (nameSrcSpan nname) -- | Compute set of free variables of given type. freeVariables :: forall name. (NamedThing name, DataId name) => HsType name -> Set NameRep freeVariables = everythingWithState Set.empty Set.union query where query term ctx = case cast term :: Maybe (HsType name) of Just (HsForAllTy _ _ bndrs _ _) -> (Set.empty, Set.union ctx (bndrsNames bndrs)) Just (HsTyVar name) | getName name `Set.member` ctx -> (Set.empty, ctx) | otherwise -> (Set.singleton $ getNameRep name, ctx) _ -> (Set.empty, ctx) bndrsNames = Set.fromList . map (getName . tyVarName . unLoc) . hsq_tvs -- | Make given type visually unambiguous. -- -- After applying 'specialize' method, some free type variables may become -- visually ambiguous - for example, having @a -> b@ and specializing @a@ to -- @(a -> b)@ we get @(a -> b) -> b@ where first occurrence of @b@ refers to -- different type variable than latter one. Applying 'rename' function -- will fix that type to be visually unambiguous again (making it something -- like @(a -> c) -> b@). rename :: SetName name => Set NameRep -> HsType name -> HsType name rename fv typ = fst $ evalRWS (renameType typ) fv Map.empty -- | Renaming monad. -- -- This is just a simple RWS instance, where /reader/ part consists of names -- that are initially taken and cannot change, /state/ part is just context -- with name bindings and /writer/ part is not used. type Rename name a = RWS (Set NameRep) () (Map Name name) a renameType :: SetName name => HsType name -> Rename name (HsType name) renameType (HsForAllTy ex mspan lbndrs lctx lt) = do lbndrs' <- renameLTyVarBndrs lbndrs HsForAllTy <$> pure ex <*> pure mspan <*> pure lbndrs' <*> located renameContext lctx <*> renameLType lt renameType (HsTyVar name) = HsTyVar <$> renameName name renameType (HsAppTy lf la) = HsAppTy <$> renameLType lf <*> renameLType la renameType (HsFunTy la lr) = HsFunTy <$> renameLType la <*> renameLType lr renameType (HsListTy lt) = HsListTy <$> renameLType lt renameType (HsPArrTy lt) = HsPArrTy <$> renameLType lt renameType (HsTupleTy srt lt) = HsTupleTy srt <$> mapM renameLType lt renameType (HsOpTy la lop lb) = HsOpTy <$> renameLType la <*> renameLTyOp lop <*> renameLType lb renameType (HsParTy lt) = HsParTy <$> renameLType lt renameType (HsIParamTy ip lt) = HsIParamTy ip <$> renameLType lt renameType (HsEqTy la lb) = HsEqTy <$> renameLType la <*> renameLType lb renameType (HsKindSig lt lk) = HsKindSig <$> renameLType lt <*> pure lk renameType t@(HsQuasiQuoteTy _) = pure t renameType t@(HsSpliceTy _ _) = pure t renameType (HsDocTy lt doc) = HsDocTy <$> renameLType lt <*> pure doc renameType (HsBangTy bang lt) = HsBangTy bang <$> renameLType lt renameType t@(HsRecTy _) = pure t renameType t@(HsCoreTy _) = pure t renameType (HsExplicitListTy ph ltys) = HsExplicitListTy ph <$> renameLTypes ltys renameType (HsExplicitTupleTy phs ltys) = HsExplicitTupleTy phs <$> renameLTypes ltys renameType t@(HsTyLit _) = pure t renameType (HsWrapTy wrap t) = HsWrapTy wrap <$> renameType t renameType HsWildcardTy = pure HsWildcardTy renameType (HsNamedWildcardTy name) = HsNamedWildcardTy <$> renameName name renameLType :: SetName name => LHsType name -> Rename name (LHsType name) renameLType = located renameType renameLTypes :: SetName name => [LHsType name] -> Rename name [LHsType name] renameLTypes = mapM renameLType renameContext :: SetName name => HsContext name -> Rename name (HsContext name) renameContext = renameLTypes renameLTyVarBndrs :: SetName name => LHsTyVarBndrs name -> Rename name (LHsTyVarBndrs name) renameLTyVarBndrs lbndrs = do tys' <- mapM (located renameTyVarBndr) $ hsq_tvs lbndrs pure $ lbndrs { hsq_tvs = tys' } renameTyVarBndr :: SetName name => HsTyVarBndr name -> Rename name (HsTyVarBndr name) renameTyVarBndr (UserTyVar name) = UserTyVar <$> renameNameBndr name renameTyVarBndr (KindedTyVar name kinds) = KindedTyVar <$> located renameNameBndr name <*> pure kinds renameLTyOp :: SetName name => LHsTyOp name -> Rename name (LHsTyOp name) renameLTyOp (wrap, lname) = (,) wrap <$> located renameName lname renameNameBndr :: SetName name => name -> Rename name name renameNameBndr name = do fv <- ask env <- get case Map.lookup (getName name) env of Just name' -> pure name' Nothing | getNameRep name `Set.member` fv -> freshName name Nothing -> pure name renameName :: SetName name => name -> Rename name name renameName name = do env <- get pure $ case Map.lookup (getName name) env of Just name' -> name' Nothing -> name -- | Generate fresh occurrence name, put it into context and return. freshName :: SetName name => name -> Rename name name freshName name = do fv <- ask env <- get let taken = Set.union fv (Set.fromList . map getNameRep . Map.keys $ env) let name' = setInternalNameRep (findFreshName taken occ) name put $ Map.insert nname name' env return name' where nname = getName name occ = getNameRep nname findFreshName :: Set NameRep -> NameRep -> NameRep findFreshName taken = fromJust . List.find isFresh . alternativeNames where isFresh = not . flip Set.member taken alternativeNames :: NameRep -> [NameRep] alternativeNames name | [_] <- nameRepString name = letterNames ++ alternativeNames' name where letterNames = map (stringNameRep . pure) ['a'..'z'] alternativeNames name = alternativeNames' name alternativeNames' :: NameRep -> [NameRep] alternativeNames' name = [ stringNameRep $ str ++ show i | i :: Int <- [0..] ] where str = nameRepString name located :: Functor f => (a -> f b) -> Located a -> f (Located b) located f (L loc e) = L loc <$> f e tyVarName :: HsTyVarBndr name -> name tyVarName (UserTyVar name) = name tyVarName (KindedTyVar (L _ name) _) = name