{-# LANGUAGE DeriveDataTypeable #-} -- | -- Module : Data.Attoparsec.Number -- Copyright : Bryan O'Sullivan 2007-2015 -- License : BSD3 -- -- Maintainer : bos@serpentine.com -- Stability : experimental -- Portability : unknown -- -- This module is deprecated, and both the module and 'Number' type -- will be removed in the next major release. Use the -- <http://hackage.haskell.org/package/scientific scientific> package -- and the 'Data.Scientific.Scientific' type instead. -- -- A simple number type, useful for parsing both exact and inexact -- quantities without losing much precision. module Data.Attoparsec.Number {-# DEPRECATED "This module will be removed in the next major release." #-} ( Number(..) ) where import Control.DeepSeq (NFData(rnf)) import Data.Data (Data) import Data.Function (on) import Data.Typeable (Typeable) -- | A numeric type that can represent integers accurately, and -- floating point numbers to the precision of a 'Double'. -- -- /Note/: this type is deprecated, and will be removed in the next -- major release. Use the 'Data.Scientific.Scientific' type instead. data Number = I !Integer | D {-# UNPACK #-} !Double deriving (Typeable, Data) {-# DEPRECATED Number "Use Scientific instead." #-} instance Show Number where show (I a) = show a show (D a) = show a instance NFData Number where rnf (I _) = () rnf (D _) = () {-# INLINE rnf #-} binop :: (Integer -> Integer -> a) -> (Double -> Double -> a) -> Number -> Number -> a binop _ d (D a) (D b) = d a b binop i _ (I a) (I b) = i a b binop _ d (D a) (I b) = d a (fromIntegral b) binop _ d (I a) (D b) = d (fromIntegral a) b {-# INLINE binop #-} instance Eq Number where (==) = binop (==) (==) {-# INLINE (==) #-} (/=) = binop (/=) (/=) {-# INLINE (/=) #-} instance Ord Number where (<) = binop (<) (<) {-# INLINE (<) #-} (<=) = binop (<=) (<=) {-# INLINE (<=) #-} (>) = binop (>) (>) {-# INLINE (>) #-} (>=) = binop (>=) (>=) {-# INLINE (>=) #-} compare = binop compare compare {-# INLINE compare #-} instance Num Number where (+) = binop (((I$!).) . (+)) (((D$!).) . (+)) {-# INLINE (+) #-} (-) = binop (((I$!).) . (-)) (((D$!).) . (-)) {-# INLINE (-) #-} (*) = binop (((I$!).) . (*)) (((D$!).) . (*)) {-# INLINE (*) #-} abs (I a) = I $! abs a abs (D a) = D $! abs a {-# INLINE abs #-} negate (I a) = I $! negate a negate (D a) = D $! negate a {-# INLINE negate #-} signum (I a) = I $! signum a signum (D a) = D $! signum a {-# INLINE signum #-} fromInteger = (I$!) . fromInteger {-# INLINE fromInteger #-} instance Real Number where toRational (I a) = fromIntegral a toRational (D a) = toRational a {-# INLINE toRational #-} instance Fractional Number where fromRational = (D$!) . fromRational {-# INLINE fromRational #-} (/) = binop (((D$!).) . (/) `on` fromIntegral) (((D$!).) . (/)) {-# INLINE (/) #-} recip (I a) = D $! recip (fromIntegral a) recip (D a) = D $! recip a {-# INLINE recip #-} instance RealFrac Number where properFraction (I a) = (fromIntegral a,0) properFraction (D a) = case properFraction a of (i,d) -> (i,D d) {-# INLINE properFraction #-} truncate (I a) = fromIntegral a truncate (D a) = truncate a {-# INLINE truncate #-} round (I a) = fromIntegral a round (D a) = round a {-# INLINE round #-} ceiling (I a) = fromIntegral a ceiling (D a) = ceiling a {-# INLINE ceiling #-} floor (I a) = fromIntegral a floor (D a) = floor a {-# INLINE floor #-}