<html xmlns="http://www.w3.org/1999/xhtml" ><head ><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><meta name="viewport" content="width=device-width, initial-scale=1" /><title >Math</title ><link href="#" rel="stylesheet" type="text/css" title="Linuwial" /><link rel="stylesheet" type="text/css" href="#" /><link rel="stylesheet" type="text/css" href="#" /><script src="haddock-bundle.min.js" async="async" type="text/javascript" ></script ><script type="text/x-mathjax-config" >MathJax.Hub.Config({ tex2jax: { processClass: "mathjax", ignoreClass: ".*" } });</script ><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript" ></script ></head ><body ><div id="package-header" ><span class="caption empty" > </span ><ul class="links" id="page-menu" ><li ><a href="#" >Contents</a ></li ><li ><a href="#" >Index</a ></li ></ul ></div ><div id="content" ><div id="module-header" ><table class="info" ><tr ><th >Safe Haskell</th ><td >Safe-Inferred</td ></tr ></table ><p class="caption" >Math</p ></div ><div id="description" ><p class="caption" >Description</p ><div class="doc" ><p >Math (display) for <code >normalDensity</code ></p ><p ><span class="mathjax" >\[ \int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi} \]</span ></p ><p ><span class="mathjax" >\(\int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi}\)</span ></p ></div ></div ><div id="synopsis" ><details id="syn" ><summary >Synopsis</summary ><ul class="details-toggle" data-details-id="syn" ><li class="src short" ><a href="#" >f</a > :: <a href="#" title="Prelude" >Integer</a ></li ></ul ></details ></div ><div id="interface" ><h1 >Documentation</h1 ><div class="top" ><p class="src" ><a id="v:f" class="def" >f</a > :: <a href="#" title="Prelude" >Integer</a > <a href="#" class="selflink" >#</a ></p ><div class="doc" ><p >Math (inline) for <code >normalDensity</code > <span class="mathjax" >\(\int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi}\)</span > <span class="mathjax" >\[\int_{-\infty}^{\infty} e^{-x^2/2} = \sqrt{2\pi}\]</span ></p ></div ></div ></div ></div ></body ></html >