aboutsummaryrefslogblamecommitdiff
path: root/Math/Combinatorics/YoungTableaux.hs
blob: 40b62e9414ff9c4964e652160c3515798ab901f2 (plain) (tree)
1
2
3
4
5
6
7
8
9
10









                                                                            
                           
 



                               
                     

                                    
 
                     
                             





                                                             



                                           

                                                                
 


                                                             
 
                                 
                                   
                                                
 


                                 
 








                                                                                                                   
                               


                                 




















                                                                                                                        






                                                                                          
                         





                                                             
                                                                            















                                                                  

 
----------------------------------------------------------------------------
-- 
-- Copyright   :  (C) 2017 Yuchen Pei
-- License     :  GPLv3+
--
-- Maintainer  :  Yuchen Pei
-- Stability   :  experimental
-- Portability :  non-portable
--
----------------------------------------------------------------------------
--import Data.Monoid ((<>))

module YoungTableaux where
import Prelude hiding (Word)
import qualified Data.List as L

data SSYT a = S [[a]]
data Word a = W [a] deriving Show
data GTP a = GTP [[a]] deriving Show

-- |Knuth equivalence
instance Ord a => Eq (Word a)
  where (W xs) == (W ys) = (reduceWord xs) == (reduceWord ys)

-- |Show a tableau
instance Show a => Show (SSYT a)
  where show (S xs) = "S " ++ (show $ truncList xs)

-- |Convert a nested list to an SSYT
toSSYT :: [[a]] -> SSYT a
toSSYT t = S $ (truncList t) ++ (repeat [])

transpose :: SSYT a -> SSYT a
transpose (S t) = S $ (L.transpose $ truncList t) ++ (repeat [])

-- |Truncate a nested list (tableau) by disgarding empty rows
truncList :: [[a]] -> [[a]]
truncList = fst . break null

-- |Convert an SSYT to a row word
toRowWord :: Ord a => SSYT a -> [a]
toRowWord (S t) = concat $ reverse $ truncList t

-- |Whether a word is a row word
isRowWord :: Ord a => [a] -> Bool
isRowWord = isRowWord' [] []

isRowWord' :: Ord a => [a] -> [a] -> [a] -> Bool
isRowWord' _  ys [] = ys == []
isRowWord' [] [] zs = isRowWord' [head zs] [] (tail zs)
isRowWord' xs [] zs = if last xs <= head zs then isRowWord' (xs ++ [head zs]) [] (tail zs) else isRowWord' [] xs zs
isRowWord' xs ys zs = 
  if xs == [] || last xs <= head zs
    then head ys > head zs && (isRowWord' (xs ++ [head zs]) (tail ys) (tail zs))
    else ys == [] && isRowWord' [] xs zs

-- |Reduce a word to a row word
reduceWord :: Ord a => [a] -> [a]
reduceWord xs
  | length xs <= 2 = xs
  | otherwise      = let ys = reduceWord $ init xs in reduceWord' (init $ init ys) (last $ init ys, last ys, last xs) []
  {-- | otherwise      = let ys = reduceWord $ init xs in 
                     let (zs, ws) = splitAt (length ys - 2) ys in
                       reduceWord'' zs (ws ++ [last xs]) --}

reduceWord' :: Ord a => [a] -> (a, a, a) -> [a] -> [a]
reduceWord' [] (u, v, w) ys =
  if isRowWord (u:v:w:ys)
    then u:v:w:ys
    else if w < v && u <= v
      then if u > w then u:w:v:ys
                    else v:u:w:ys
      else u:v:w:ys
reduceWord' xs (u, v, w) ys =
  if isRowWord $ xs ++ (u:v:w:ys)
    then xs ++ (u:v:w:ys)
    else if w < v && u <= v 
      then if u > w then reduceWord' (init xs) (last xs, u, w) (v:ys)
                    else reduceWord' (init xs) (last xs, v, u) (w:ys)
      else reduceWord' (init xs) (last xs, u, v) (w:ys)

sSYT2GTP :: SSYT Int -> GTP Int
sSYT2GTP (S t) = GTP $ sSYT2GTP' (maximum $ maximum <$> (truncList t)) []
    where sSYT2GTP' :: Int -> [[Int]] -> [[Int]]
          sSYT2GTP' 0 ys = ys
          sSYT2GTP' k ys = sSYT2GTP' (k - 1) $ ((length . filter (<=k)) <$> (take k t)):ys


-- |QuickCheck properties
prop_ReduceWord :: [Int] -> Bool
prop_ReduceWord = isRowWord . reduceWord

prop_ReduceWord' :: [Int] -> Bool
prop_ReduceWord' xs = (length xs) == (length $ reduceWord xs)

-- |Another implementation of reduceWord' in case of performance difference.
reduceWord'' :: Ord a => [a] -> [a] -> [a]
reduceWord'' [] (u:v:w:ys) =
  if isRowWord (u:v:w:ys)
    then u:v:w:ys
    else if w < v && u <= v
      then if u > w then u:w:v:ys
                    else v:u:w:ys
      else u:v:w:ys
reduceWord'' xs (u:v:w:ys) =
  if isRowWord $ xs ++ (u:v:w:ys)
    then xs ++ (u:v:w:ys)
    else if w < v && u <= v 
      then if u > w then reduceWord'' (init xs) (last xs:u:w:v:ys)
                    else reduceWord'' (init xs) (last xs:v:u:w:ys)
      else reduceWord'' (init xs) (last xs:u:v:w:ys)
reduceWord'' xs ys = xs ++ ys