
6 Assembler

What’s in a name? That which we call a rose by any other name would smell as sweet.

—Shakespeare, from Romeo and Juliet

The first half of the book (chapters 1–5) described and built a computer’s hardware

platform. The second half of the book (chapters 6–12) focuses on the computer’s

software hierarchy, culminating in the development of a compiler and a basic oper-

ating system for a simple, object-based programming language. The first and most

basic module in this software hierarchy is the assembler. In particular, chapter 4

presented machine languages in both their assembly and binary representations. This

chapter describes how assemblers can systematically translate programs written in

the former into programs written in the latter. As the chapter unfolds, we explain

how to develop a Hack assembler—a program that generates binary code that can

run as is on the hardware platform built in chapter 5.

Since the relationship between symbolic assembly commands and their corre-

sponding binary codes is straightforward, writing an assembler (using some high-

level language) is not a difficult task. One complication arises from allowing

assembly programs to use symbolic references to memory addresses. The assembler is

expected to manage these user-defined symbols and resolve them to physical memory

addresses. This task is normally done using a symbol table—a classical data structure

that comes to play in many software translation projects.

As usual, the Hack assembler is not an end in itself. Rather, it provides a simple

and concise demonstration of the key software engineering principles used in the

construction of any assembler. Further, writing the assembler is the first in the series

of seven software development projects that accompany the rest of the book. Unlike

the hardware projects, which were implemented in HDL, the software projects that

construct the translator programs (assembler, virtual machine, and compiler) may be

implemented in any programming language. In each project, we provide a language-

neutral API and a detailed step-by-step test plan, along with all the necessary test

programs and test scripts. Each one of these projects, beginning with the assembler,

is a stand-alone module that can be developed and tested in isolation from all the

other projects.

6.1 Background

Machine languages are typically specified in two flavors: symbolic and binary. The

binary codes—for example, 110000101000000110000000000000111—represent

actual machine instructions, as understood by the underlying hardware. For exam-

ple, the instruction’s leftmost 8 bits can represent an operation code, say LOAD, the

next 8 bits a register, say R3, and the remaining 16 bits an address, say 7. Depending

on the hardware’s logic design and the agreed-upon machine language, the overall

32-bit pattern can thus cause the hardware to effect the operation ‘‘load the contents

of Memory[7] into register R3.’’ Modern computer platforms support dozens if

not hundreds of such elementary operations. Thus, machine languages can be rather

complex, involving many operation codes, different memory addressing modes, and

various instruction formats.

One way to cope with this complexity is to document machine instructions

using an agreed-upon syntax, say LOAD R3,7 rather than 110000101000000110

000000000000111. And since the translation from symbolic notation to binary code

is straightforward, it makes sense to allow low-level programs to be written in sym-

bolic notation and to have a computer program translate them into binary code. The

symbolic language is called assembly, and the translator program assembler. The

assembler parses each assembly command into its underlying fields, translates each

field into its equivalent binary code, and assembles the generated codes into a binary

instruction that can be actually executed by the hardware.

Symbols Binary instructions are represented in binary code. By definition, they

refer to memory addresses using actual numbers. For example, consider a program

that uses a variable to represent the weight of various things, and suppose that this

variable has been mapped on location 7 in the computer’s memory. At the binary

code level, instructions that manipulate the weight variable must refer to it using the

explicit address 7. Yet once we step up to the assembly level, we can allow writing

commands like LOAD R3,weight instead of LOAD R3,7. In both cases, the command

will effect the same operation: ‘‘set R3 to the contents of Memory[7].’’ In a similar

fashion, rather than using commands like goto 250, assembly languages allow com-

mands like goto loop, assuming that somewhere in the program the symbol loop is

104 Chapter 6

made to refer to address 250. In general then, symbols are introduced into assembly

programs from two sources:

m Variables: The programmer can use symbolic variable names, and the trans-

lator will ‘‘automatically’’ assign them to memory addresses. Note that the actual

values of these addresses are insignificant, so long as each symbol is resolved to the

same address throughout the program’s translation.

m Labels: The programmer can mark various locations in the program with sym-

bols. For example, one can declare the label loop to refer to the beginning of a cer-

tain code segment. Other commands in the program can then goto loop, either

conditionally or unconditionally.

The introduction of symbols into assembly languages suggests that assemblers

must be more sophisticated than dumb text processing programs. Granted, trans-

lating agreed-upon symbols into agreed-upon binary codes is not a complicated task.

At the same time, the mapping of user-defined variable names and symbolic labels

on actual memory addresses is not trivial. In fact, this symbol resolution task is the

first nontrivial translation challenge in our ascent up the software hierarchy from the

hardware level. The following example illustrates the challenge and the common way

to address it.

Symbol Resolution Consider figure 6.1, showing a program written in some self-

explanatory low-level language. The program contains four user-defined symbols:

two variable names (i and sum) and two labels (loop and end). How can we sys-

tematically convert this program into a symbol-less code?

We start by making two arbitrary game rules: The translated code will be stored

in the computer’s memory starting at address 0, and variables will be allocated to

memory locations starting at address 1024 (these rules depend on the specific target

hardware platform). Next, we build a symbol table, as follows. For each new symbol

xxx encountered in the source code, we add a line ðxxx , nÞ to the symbol table,

where n is the memory address associated with the symbol according to the game

rules. After completing the construction of the symbol table, we use it to translate the

program into its symbol-less version.

Note that according to the assumed game rules, variables i and sum are allo-

cated to addresses 1024 and 1025, respectively. Of course any other two addresses

will be just as good, so long as all references to i and sum in the program resolve

to the same physical addresses, as indeed is the case. The remaining code is self-

explanatory, except perhaps for instruction 6. This instruction terminates the pro-

gram’s execution by putting the computer in an infinite loop.

105 Assembler

Three comments are in order here. First, note that the variable allocation as-

sumption implies that the largest program that we can run is 1,024 instructions

long. Since realistic programs (like the operating system) are obviously much larger,

the base address for storing variables will normally be much farther. Second, the as-

sumption that each source command is mapped on one word may be naı̈ve. Typi-

cally, some assembly commands (e.g., if i=101 goto end) may translate into several

machine instructions and thus will end up occupying several memory locations.

The translator can deal with this variance by keeping track of how many words

each source command generates, then updating its ‘‘instruction memory counter’’

accordingly.

Finally, the assumption that each variable is represented by a single memory lo-

cation is also naı̈ve. Programming languages feature variables of different types, and

these occupy different memory spaces on the target computer. For example, the C

language data types short and double represent 16-bit and 64-bit numbers, respec-

tively. When a C program is run on a 16-bit machine, these variables will occupy a

single memory address and a block of four consecutive addresses, respectively. Thus,

when allocating memory space for variables, the translator must take into account

both their data types and the word width of the target hardware.

The Assembler Before an assembly program can be executed on a computer, it must

be translated into the computer’s binary machine language. The translation task is

Code with symbols Symbol table Code with symbols resolved

00

01

02

03

04

05

06

// Computes sum=1+...+100

i=1

sum=0

loop:

if i=101 goto end

sum=sum+i

i=i+1

goto loop

end:

goto end

i 1024

sum 1025

loop 2

end 6

00

01

02

03

04

05

06

M[1024]=1 // (M=memory)

M[1025]=0

if M[1024]=101 goto 6

M[1025]=M[1025]+M[1024]

M[1024]=M[1024]+1

goto 2

goto 6

(assuming that

variables are

allocated to

Memory[1024]

onward)
(assuming that each symbolic

command is translated into one

word in memory)

Figure 6.1 Symbol resolution using a symbol table. The line numbers are not part of the
program—they simply count all the lines in the program that represent real instructions,
namely, neither comments nor label declarations. Note that once we have the symbol table in
place, the symbol resolution task is straightforward.

106 Chapter 6

done by a program called the assembler. The assembler takes as input a stream of

assembly commands and generates as output a stream of equivalent binary instruc-

tions. The resulting code can be loaded as is into the computer’s memory and exe-

cuted by the hardware.

We see that the assembler is essentially a text-processing program, designed to

provide translation services. The programmer who is commissioned to write the

assembler must be given the full documentation of the assembly syntax, on the

one hand, and the respective binary codes, on the other. Following this contract—

typically called machine language specification—it is not difficult to write a program

that, for each symbolic command, carries out the following tasks (not necessarily in

that order):

m Parse the symbolic command into its underlying fields.

m For each field, generate the corresponding bits in the machine language.

m Replace all symbolic references (if any) with numeric addresses of memory

locations.

m Assemble the binary codes into a complete machine instruction.

Three of the above tasks (parsing, code generation, and final assembly) are rather

easy to implement. The fourth task—symbols handling—is more challenging, and

considered one of the main functions of the assembler. This function was described in

the previous section. The next two sections specify the Hack assembly language and

propose an assembler implementation for it, respectively.

6.2 Hack Assembly-to-Binary Translation Specification

The Hack assembly language and its equivalent binary representation were specified

in chapter 4. A compact and formal version of this language specification is repeated

here, for ease of reference. This specification can be viewed as the contract that Hack

assemblers must implement, one way or another.

6.2.1 Syntax Conventions and File Formats

File Names By convention, programs in binary machine code and in assembly

code are stored in text files with ‘‘hack’’ and ‘‘asm’’ extensions, respectively. Thus, a

Prog.asm file is translated by the assembler into a Prog.hack file.

107 Assembler

Binary Code (.hack) Files A binary code file is composed of text lines. Each line is

a sequence of 16 ‘‘0’’ and ‘‘1’’ ASCII characters, coding a single 16-bit machine lan-

guage instruction. Taken together, all the lines in the file represent a machine lan-

guage program. When a machine language program is loaded into the computer’s

instruction memory, the binary code represented by the file’s nth line is stored in ad-

dress n of the instruction memory (the count of both program lines and memory

addresses starts at 0).

Assembly Language (.asm) Files An assembly language file is composed of text

lines, each representing either an instruction or a symbol declaration:

m Instruction: an A-instruction or a C-instruction, described in section 6.2.2.

m (Symbol): This pseudo-command binds the Symbol to the memory location

into which the next command in the program will be stored. It is called ‘‘pseudo-

command’’ since it generates no machine code.

(The remaining conventions in this section pertain to assembly programs only.)

Constants and Symbols Constants must be non-negative and are written in decimal

notation. A user-defined symbol can be any sequence of letters, digits, underscore (_),

dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Comments Text beginning with two slashes (//) and ending at the end of the line is

considered a comment and is ignored.

White Space Space characters are ignored. Empty lines are ignored.

Case Conventions All the assembly mnemonics must be written in uppercase. The

rest (user-defined labels and variable names) is case sensitive. The convention is to

use uppercase for labels and lowercase for variable names.

6.2.2 Instructions

The Hack machine language consists of two instruction types called addressing in-

struction (A-instruction) and compute instruction (C-instruction). The instruction

format is as follows.

108 Chapter 6

A-instruction: @value // Where value is either a non-negative decimal number

// or a symbol referring to such number.

value (v ¼ 0 or 1)

Binary: 0 v v v v v v v v v v v v v v v

C-instruction: dest¼comp;jump // Either the dest or jump fields may be empty.

// If dest is empty, the ‘‘¼’’ is omitted;

// If jump is empty, the ‘‘;’’ is omitted.

comp dest jump

Binary: 1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

The translation of each of the three fields comp, dest, jump to their binary forms is

specified in the following three tables.

comp

(when a¼0)
c1 c2 c3 c4 c5 c6

comp

(when a¼1)

0 1 0 1 0 1 0

1 1 1 1 1 1 1

-1 1 1 1 0 1 0

D 0 0 1 1 0 0

A 1 1 0 0 0 0 M

!D 0 0 1 1 0 1

!A 1 1 0 0 0 1 !M

-D 0 0 1 1 1 1

-A 1 1 0 0 1 1 -M

D+1 0 1 1 1 1 1

A+1 1 1 0 1 1 1 M+1

D-1 0 0 1 1 1 0

A-1 1 1 0 0 1 0 M-1

D+A 0 0 0 0 1 0 D+M

D-A 0 1 0 0 1 1 D-M

A-D 0 0 0 1 1 1 M-D

D&A 0 0 0 0 0 0 D&M

D|A 0 1 0 1 0 1 D|M

109 Assembler

dest d1 d2 d3 jump j1 j2 j3

null 0 0 0 null 0 0 0

M 0 0 1 JGT 0 0 1

D 0 1 0 JEQ 0 1 0

MD 0 1 1 JGE 0 1 1

A 1 0 0 JLT 1 0 0

AM 1 0 1 JNE 1 0 1

AD 1 1 0 JLE 1 1 0

AMD 1 1 1 JMP 1 1 1

6.2.3 Symbols

Hack assembly commands can refer to memory locations (addresses) using

either constants or symbols. Symbols in assembly programs arise from three

sources.

Predefined Symbols Any Hack assembly program is allowed to use the following

predefined symbols.

Label RAM address (hexa)

SP 0 0x0000

LCL 1 0x0001

ARG 2 0x0002

THIS 3 0x0003

THAT 4 0x0004

R0-R15 0-15 0x0000-f

SCREEN 16384 0x4000

KBD 24576 0x6000

Note that each one of the top five RAM locations can be referred to using two

predefined symbols. For example, either R2 or ARG can be used to refer to

RAM[2].

Label Symbols The pseudo-command (Xxx) defines the symbol Xxx to refer to the

instruction memory location holding the next command in the program. A label can

be defined only once and can be used anywhere in the assembly program, even before

the line in which it is defined.

110 Chapter 6

Variable Symbols Any symbol Xxx appearing in an assembly program that is

not predefined and is not defined elsewhere using the (Xxx) command is treated as

a variable. Variables are mapped to consecutive memory locations as they are first

encountered, starting at RAM address 16 (0x0010).

6.2.4 Example

Chapter 4 presented a program that sums up the integers 1 to 100. Figure 6.2 repeats

this example, showing both its assembly and binary versions.

Assembly code (Prog.asm) Binary code (Prog.hack)

// Adds 1 + ... + 100

@i

M=1 // i=1

@sum

M=0 // sum=0

(LOOP)

@i

D=M // D=i

@100

D=D-A // D=i-100

@END

D;JGT // if (i-100)>0 goto END

@i

D=M // D=i

@sum

M=D+M // sum=sum+i

@i

M=M+1 // i=i+1

@LOOP

0;JMP // goto LOOP

(END)

@END

0;JMP // infinite loop

Assembler

(this line should be erased)

0000 0000 0001 0000

1110 1111 1100 1000

0000 0000 0001 0001

1110 1010 1000 1000

(this line should be erased)

0000 0000 0001 0000

1111 1100 0001 0000

0000 0000 0110 0100

1110 0100 1101 0000

0000 0000 0001 0010

1110 0011 0000 0001

0000 0000 0001 0000

1111 1100 0001 0000

0000 0000 0001 0001

1111 0000 1000 1000

0000 0000 0001 0000

1111 1101 1100 1000

0000 0000 0000 0100

1110 1010 1000 0111

(this line should be erased)

0000 0000 0001 0010

1110 1010 1000 0111

Figure 6.2 Assembly and binary representations of the same program.

111 Assembler

6.3 Implementation

The Hack assembler reads as input a text file named Prog.asm, containing a Hack

assembly program, and produces as output a text file named Prog.hack, contain-

ing the translated Hack machine code. The name of the input file is supplied to the

assembler as a command line argument:

prompt> Assembler Prog.asm

The translation of each individual assembly command to its equivalent binary in-

struction is direct and one-to-one. Each command is translated separately. In partic-

ular, each mnemonic component (field) of the assembly command is translated into

its corresponding bit code according to the tables in section 6.2.2, and each symbol in

the command is resolved to its numeric address as specified in section 6.2.3.

We propose an assembler implementation based on four modules: a Parser module

that parses the input, a Code module that provides the binary codes of all the as-

sembly mnemonics, a SymbolTable module that handles symbols, and a main pro-

gram that drives the entire translation process.

A Note about API Notation The assembler development is the first in a series of

five software construction projects that build our hierarchy of translators (assembler,

virtual machine, and compiler). Since readers can develop these projects in the pro-

gramming language of their choice, we base our proposed implementation guidelines

on language independent APIs. A typical project API describes several modules, each

containing one or more routines. In object-oriented languages like Java, Cþþ, and

C#, a module usually corresponds to a class, and a routine usually corresponds to

a method. In procedural languages, routines correspond to functions, subroutines,

or procedures, and modules correspond to collections of routines that handle related

data. In some languages (e.g., Modula-2) a module may be expressed explicitly, in

others implicitly (e.g., a file in the C language), and in others (e.g., Pascal) it will

have no corresponding language construct, and will just be a conceptual grouping of

routines.

6.3.1 The Parser Module

The main function of the parser is to break each assembly command into its under-

lying components (fields and symbols). The API is as follows.

112 Chapter 6

Parser: Encapsulates access to the input code. Reads an assembly language com-

mand, parses it, and provides convenient access to the command’s components

(fields and symbols). In addition, removes all white space and comments.

Routine Arguments Returns Function

Constructor/

initializer

Input file/

stream

— Opens the input file/stream and

gets ready to parse it.

hasMoreCommands — Boolean Are there more commands in the

input?

advance — — Reads the next command from

the input and makes it the current

command. Should be called only

if hasMoreCommands() is true.

Initially there is no current command.

commandType — A_COMMAND,

C_COMMAND,

L_COMMAND

Returns the type of the current

command:
m A_COMMAND for @Xxx where

Xxx is either a symbol or a

decimal number
m C_COMMAND for

dest=comp;jump
m L_COMMAND (actually, pseudo-

command) for (Xxx) where Xxx

is a symbol.

symbol — string Returns the symbol or decimal

Xxx of the current command

@Xxx or (Xxx). Should be called

only when commandType() is

A_COMMAND or L_COMMAND.

dest — string Returns the dest mnemonic in

the current C-command (8 possi-

bilities). Should be called only

when commandType() is C_COMMAND.

113 Assembler

Routine Arguments Returns Function

comp — string Returns the comp mnemonic in

the current C-command (28 pos-

sibilities). Should be called only

when commandType() is

C_COMMAND.

jump — string Returns the jump mnemonic in

the current C-command (8 pos-

sibilities). Should be called only

when commandType() is

C_COMMAND.

6.3.2 The Code Module

Code: Translates Hack assembly language mnemonics into binary codes.

Routine Arguments Returns Function

dest mnemonic (string) 3 bits Returns the binary code of the

dest mnemonic.

comp mnemonic (string) 7 bits Returns the binary code of the

comp mnemonic.

jump mnemonic (string) 3 bits Returns the binary code of the

jump mnemonic.

6.3.3 Assembler for Programs with No Symbols

We suggest building the assembler in two stages. In the first stage, write an assembler

that translates assembly programs without symbols. This can be done using the

Parser and Code modules just described. In the second stage, extend the assembler

with symbol handling capabilities, as we explain in the next section.

The contract for the first symbol-less stage is that the input Prog.asm program

contains no symbols. This means that (a) in all address commands of type @Xxx the

Xxx constants are decimal numbers and not symbols, and (b) the input file contains

no label commands, namely, no commands of type (Xxx).

114 Chapter 6

The overall symbol-less assembler program can now be implemented as follows.

First, the program opens an output file named Prog.hack. Next, the program

marches through the lines (assembly instructions) in the supplied Prog.asm file.

For each C-instruction, the program concatenates the translated binary codes of the

instruction fields into a single 16-bit word. Next, the program writes this word into

the Prog.hack file. For each A-instruction of type @Xxx, the program translates the

decimal constant returned by the parser into its binary representation and writes the

resulting 16-bit word into the Prog.hack file.

6.3.4 The SymbolTable Module

Since Hack instructions can contain symbols, the symbols must be resolved into

actual addresses as part of the translation process. The assembler deals with this task

using a symbol table, designed to create and maintain the correspondence between

symbols and their meaning (in Hack’s case, RAM and ROM addresses). A natural

data structure for representing such a relationship is the classical hash table. In most

programming languages, such a data structure is available as part of a standard

library, and thus there is no need to develop it from scratch. We propose the follow-

ing API.

SymbolTable: Keeps a correspondence between symbolic labels and numeric

addresses.

Routine Arguments Returns Function

Constructor — — Creates a new empty symbol

table.

addEntry symbol (string),

address (int)

— Adds the pair (symbol,

address) to the table.

contains symbol (string) Boolean Does the symbol table contain

the given symbol?

GetAddress symbol (string) int Returns the address associated

with the symbol.

6.3.5 Assembler for Programs with Symbols

Assembly programs are allowed to use symbolic labels (destinations of goto com-

mands) before the symbols are defined. This convention makes the life of assembly

115 Assembler

programmers easier and that of assembler developers harder. A common solution

to this complication is to write a two-pass assembler that reads the code twice, from

start to end. In the first pass, the assembler builds the symbol table and generates

no code. In the second pass, all the label symbols encountered in the program have

already been bound to memory locations and recorded in the symbol table. Thus, the

assembler can replace each symbol with its corresponding meaning (numeric address)

and generate the final binary code.

Recall that there are three types of symbols in the Hack language: predefined

symbols, labels, and variables. The symbol table should contain and handle all these

symbols, as follows.

Initialization Initialize the symbol table with all the predefined symbols and their

pre-allocated RAM addresses, according to section 6.2.3.

First Pass Go through the entire assembly program, line by line, and build the

symbol table without generating any code. As you march through the program lines,

keep a running number recording the ROM address into which the current command

will be eventually loaded. This number starts at 0 and is incremented by 1 whenever

a C-instruction or an A-instruction is encountered, but does not change when a label

pseudocommand or a comment is encountered. Each time a pseudocommand (Xxx)

is encountered, add a new entry to the symbol table, associating Xxx with the ROM

address that will eventually store the next command in the program. This pass results

in entering all the program’s labels along with their ROM addresses into the symbol

table. The program’s variables are handled in the second pass.

Second Pass Now go again through the entire program, and parse each line. Each

time a symbolic A-instruction is encountered, namely, @Xxx where Xxx is a symbol

and not a number, look up Xxx in the symbol table. If the symbol is found in the

table, replace it with its numeric meaning and complete the command’s translation.

If the symbol is not found in the table, then it must represent a new variable. To

handle it, add the pair (Xxx, n) to the symbol table, where n is the next available

RAM address, and complete the command’s translation. The allocated RAM

addresses are consecutive numbers, starting at address 16 (just after the addresses

allocated to the predefined symbols).

This completes the assembler’s implementation.

116 Chapter 6

6.4 Perspective

Like most assemblers, the Hack assembler is a relatively simple program, dealing

mainly with text processing. Naturally, assemblers for richer machine languages are

more complex. Also, some assemblers feature more sophisticated symbol handling

capabilities not found in Hack. For example, the assembler may allow programmers

to explicitly associate symbols with particular data addresses, to perform ‘‘constant

arithmetic’’ on symbols (e.g., to use table+5 to refer to the fifth memory location

after the address referred to by table), and so on. Additionally, many assemblers

are capable of handling macro commands. A macro command is simply a sequence of

machine instructions that has a name. For example, our assembler can be extended

to translate an agreed-upon macro-command, say D=M[xxx], into the two instruc-

tions @xxx followed immediately by D=M (xxx being an address). Clearly, such

macro commands can considerably simplify the programming of commonly occur-

ring operations, at a low translation cost.

We note in closing that stand-alone assemblers are rarely used in practice.

First, assembly programs are rarely written by humans, but rather by compilers. And

a compiler—being an automaton—does not have to bother to generate symbolic

commands, since it may be more convenient to directly produce binary machine

code. On the other hand, many high-level language compilers allow programmers to

embed segments of assembly language code within high-level programs. This capa-

bility, which is rather common in C language compilers, gives the programmer direct

control of the underlying hardware, for optimization.

6.5 Project

Objective Develop an assembler that translates programs written in Hack assembly

language into the binary code understood by the Hack hardware platform. The

assembler must implement the translation specification described in section 6.2.

Resources The only tool needed for completing this project is the program-

ming language in which you will implement your assembler. You may also find

the following two tools useful: the assembler and CPU emulator supplied with the

book. These tools allow you to experiment with a working assembler before you

set out to build one yourself. In addition, the supplied assembler provides a visual

117 Assembler

line-by-line translation GUI and allows online code comparisons with the outputs

that your assembler will generate. For more information about these capabilities,

refer to the assembler tutorial (part of the book’s software suite).

Contract When loaded into your assembler, a Prog.asm file containing a valid

Hack assembly language program should be translated into the correct Hack binary

code and stored in a Prog.hack file. The output produced by your assembler must

be identical to the output produced by the assembler supplied with the book.

Building Plan We suggest building the assembler in two stages. First write a

symbol-less assembler, namely, an assembler that can only translate programs that

contain no symbols. Then extend your assembler with symbol handling capabilities.

The test programs that we supply here come in two such versions (without and with

symbols), to help you test your assembler incrementally.

Test Programs Each test program except the first one comes in two versions:

ProgL.asm is symbol-less, and Prog.asm is with symbols.

Add: Adds the constants 2 and 3 and puts the result in R0.

Max: Computes maxðR0;R1Þ and puts the result in R2.

Rect: Draws a rectangle at the top left corner of the screen. The rectangle is 16

pixels wide and R0 pixels high.

Pong: A single-player Ping-Pong game. A ball bounces constantly off the screen’s

‘‘walls.’’ The player attempts to hit the ball with a bat by pressing the left and right

arrow keys. For every successful hit, the player gains one point and the bat shrinks a

little to make the game harder. If the player misses the ball, the game is over. To quit

the game, press ESC.

The Pong program was written in the Jack programming language (chapter 9)

and translated into the supplied assembly program by the Jack compiler (chap-

ters 10–11). Although the original Jack program is only about 300 lines of code,

the executable Pong application is about 20,000 lines of binary code, most of

which being the Jack operating system (chapter 12). Running this interactive pro-

gram in the CPU emulator is a slow affair, so don’t expect a high-powered Pong

game. This slowness is actually a virtue, since it enables your eye to track the

graphical behavior of the program. In future projects in the book, this game will run

much faster.

118 Chapter 6

Steps Write and test your assembler program in the two stages described

previously. You may use the assembler supplied with the book to compare the out-

put of your assembler to the correct output. This testing procedure is described

next. For more information about the supplied assembler, refer to the assembler

tutorial.

The Supplied Assembler The practice of using the supplied assembler (which pro-

duces correct binary code) to test another assembler (which is not necessarily correct)

is illustrated in figure 6.3. Let Prog.asm be some program written in Hack assembly.

Suppose that we translate this program using the supplied assembler, producing

Figure 6.3 Using the supplied assembler to test the code generated by another assembler.

119 Assembler

a binary file called Prog.hack. Next, we use another assembler (e.g., the one that

you wrote) to translate the same program into another file, say Prog1.hack. Now, if

the latter assembler is working correctly, it follows that Prog.hack = Prog1.hack.

Thus, one way to test a newly written assembler is to load Prog.asm into the sup-

plied assembler program, load Prog1.hack as a compare file, then translate and

compare the two binary files (see figure 6.3). If the comparison fails, the assembler

that produced Prog1.hack must be buggy; otherwise, it may be error-free.

120 Chapter 6

