
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 1

www.nand2tetris.org

Building a Modern Computer From First Principles

Virtual Machine
Part I: Stack Arithmetic

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 2

Where we are at:

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 3

Motivation

class Main {

static int x;

function void main() {

// Inputs and multiplies two numbers

var int a, b, x;

let a = Keyboard.readInt(“Enter a number”);

let b = Keyboard.readInt(“Enter a number”);

let x = mult(a,b);

return;

}

}

// Multiplies two numbers.

function int mult(int x, int y) {

var int result, j;
let result = 0; let j = y;

while ~(j = 0) {

let result = result + x;

let j = j – 1;

}

return result;

}

}

class Main {

static int x;

function void main() {

// Inputs and multiplies two numbers

var int a, b, x;

let a = Keyboard.readInt(“Enter a number”);

let b = Keyboard.readInt(“Enter a number”);

let x = mult(a,b);

return;

}

}

// Multiplies two numbers.

function int mult(int x, int y) {

var int result, j;
let result = 0; let j = y;

while ~(j = 0) {

let result = result + x;

let j = j – 1;

}

return result;

}

}

Jack code (example)

Our ultimate goal:

Translate high-level
programs into
executable code.

Compiler

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

...

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

...

Hack code

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 4

Compilation models

. . .

requires n m translators

hardware
platform 2

hardware
platform 1

hardware
platform m

. . .

language 1 language 2 language n

direct compilation:

.

. . .

hardware
platform 2

hardware
platform 1

hardware
platform m

. . .

language 1 language 2 language n

intermediate language

requires n + m translators

2-tier compilation:

Two-tier compilation:

� First compilation stage: depends only on the details of the source language

� Second compilation stage: depends only on the details of the target language.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 5

The big picture

. . .
RISC

machine

Intermediate code

other digital platforms, each equipped
with its own VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . .
written in

a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform
VM

emulator

Some Other
language

Jack
language

Some
compiler Some Other

compiler

Jack
compiler

. . .Some
language

. . . The intermediate code:

� The interface between
the 2 compilation stages

� Must be sufficiently
general to support many
<high-level language,
machine-language>
pairs

� Can be modeled as the
language of an abstract
virtual machine (VM)

� Can be implemented in
several different ways.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 6

Focus of this lecture (yellow):

. . .
RISC

machine

VM language

other digital platforms, each equipped
with its VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . .
written in

a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform

VM
emulator

Some Other
language

Jack
language

Some
compiler Some Other

compiler

Jack
compiler

. . .Some
language

. . .

1, 2, 3, 4, 5, 6

7, 8

9, 10, 11, 12

Book chapters and
Course projects:

(this and the
next lecture)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 7

The VM model and language

Perspective:

From here till the end of the next lecture we describe the VM model used in the
Hack-Jack platform

Other VM models (like Java’s JVM/JRE and .NET’s IL/CLR) are similar in spirit
but differ in scope and details.

Several different ways to think about the notion of a virtual machine:

� Abstract software engineering view:
the VM is an interesting abstraction that makes sense in its own right

� Practical software engineering view:
the VM code layer enables “managed code” (e.g. enhanced security)

� Pragmatic compiler writing view:
a VM architecture makes writing a compiler much easier
(as we’ll see later in the course)

� Opportunistic empire builder view:
a VM architecture allows writing high-level code once and have it run on many target
platforms with little or no modification.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 8

Yet another view (poetic)

“programmers are creators of
universes for which they alone are
responsible. Universes of virtually
unlimited complexity can be
created in the form of computer
programs.”

(Joseph Weizenbaum)

Our VM model + language are an example of one such universe.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 9

Lecture plan

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

This lecture Next lecture

Goal: Specify and implement a VM model and language:

Our game plan: (a) describe the VM abstraction (above)
(b) propose how to implement it over the Hack platform.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 10

Our VM model is stack-oriented

� All operations are done on a stack

� Data is saved in several separate memory segments

� All the memory segments behave the same

� One of the memory segments m is called static, and we will use it
(as an arbitrary example) in the following examples:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 11

Data types

Our VM model features a single 16-bit data type that can be used as:

� an integer value (16-bit 2’s complement: -32768, ... , 32767)

� a Boolean value (0 and -1, standing for true and false)

� a pointer (memory address)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 12

Memory access operations

The stack:

� A classical LIFO data structure

� Elegant and powerful

� Several hardware / software implementation options.

pop

static 0

(before)

push

static 2

(after)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 13

Evaluation of arithmetic expressions

// z=(2-x)-(y+5)
push 2
push x
sub
push y
push 5
add
sub
pop z

// z=(2-x)-(y+5)
push 2
push x
sub
push y
push 5
add
sub
pop z

VM code (example)

(suppose that
x refers to static 0,
y refers to static 1, and
z refers to static 2)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 14

Evaluation of Boolean expressions

// (x<7) or (y=8)
push x
push 7
lt
push y
push 8
eq
or

// (x<7) or (y=8)
push x
push 7
lt
push y
push 8
eq
or

VM code (example)

(suppose that
x refers to static 0, and
y refers to static 1)

(actually true and false
are stored as 0 and -1,
respectively)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 15

Arithmetic and Boolean commands in the VM language (wrap-up)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 16

A VM program is designed to provide an interim abstraction of a program
written in some high-level language

Modern OO high-level languages normally feature the following variable kinds:

Class level:

� Static variables (class-level variables)

� Private variables (aka “object variables” / “fields” / “properties”)

Method level:

� Local variables

� Argument variables

When translated into the VM language,

The static, private, local and argument variables are mapped by the compiler on
the four memory segments static, this, local, argument

In addition, there are four additional memory segments, whose role will be
presented later: that, constant, pointer, temp.

The VM’s Memory segments

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 17

Memory segments and memory access commands

Memory access VM commands:

� pop memorySegment index

� push memorySegment index

Where memorySegment is static, this, local, argument, that, constant, pointer, or temp

And index is a non-negative integer

Memory access VM commands:

� pop memorySegment index

� push memorySegment index

Where memorySegment is static, this, local, argument, that, constant, pointer, or temp

And index is a non-negative integer

Notes:

(In all our code examples thus far, memorySegment was static)

The different roles of the eight memory segments will become relevant when we’ll talk
about the compiler

At the VM abstraction level, all memory segments are treated the same way.

The VM abstraction includes 8 separate memory segments named:
static, this, local, argument, that, constant, pointer, temp

As far as VM programming commands go, all memory segments look and behave the same

To access a particular segment entry, use the following generic syntax:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 18

VM programming

VM programs are normally written by compilers, not by humans

However, compilers are written by humans ...

In order to write or optimize a compiler, it helps to first understand the spirit of
the compiler’s target language – the VM language

So, we’ll now see an example of a VM program

The example includes three new VM commands:

� function functionSymbol // function declaration

� label labelSymbol // label declaration

� if-goto labelSymbol // pop x

// if x=true, jump to execute the command after labelSymbol
// else proceed to execute the next command in the program

For example, to effect if (x > n) goto loop, we can use the following VM commands:

push x

push n

gt

if-goto loop // Note that x, n, and the truth value were removed from the stack.

� function functionSymbol // function declaration

� label labelSymbol // label declaration

� if-goto labelSymbol // pop x

// if x=true, jump to execute the command after labelSymbol
// else proceed to execute the next command in the program

For example, to effect if (x > n) goto loop, we can use the following VM commands:

push x

push n

gt

if-goto loop // Note that x, n, and the truth value were removed from the stack.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 19

VM programming (example)

function mult (x,y) {

int result, j;

result = 0;

j = y;

while ~(j = 0) {

result = result + x;

j = j - 1;

}

return result;

}

function mult (x,y) {

int result, j;

result = 0;

j = y;

while ~(j = 0) {

result = result + x;

j = j - 1;

}

return result;

}

High-level code

function mult(x,y)

push 0

pop result

push y

pop j

label loop

push j

push 0

eq

if-goto end

push result

push x

add

pop result

push j

push 1

sub

pop j

goto loop

label end

push result

return

function mult(x,y)

push 0

pop result

push y

pop j

label loop

push j

push 0

eq

if-goto end

push result

push x

add

pop result

push j

push 1

sub

pop j

goto loop

label end

push result

return

VM code (first approx.)

function mult 2

push constant 0

pop local 0

push argument 1

pop local 1

label loop

push local 1

push constant 0

eq

if-goto end

push local 0

push argument 0

add

pop local 0

push local 1

push constant 1

sub

pop local 1

goto loop

label end

push local 0

return

function mult 2

push constant 0

pop local 0

push argument 1

pop local 1

label loop

push local 1

push constant 0

eq

if-goto end

push local 0

push argument 0

add

pop local 0

push local 1

push constant 1

sub

pop local 1

goto loop

label end

push local 0

return

VM code

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 20

VM programming: multiple functions

Compilation:

� A Jack application is a set of 1 or more class files (just like .java files).

� When we apply the Jack compiler to these files, the compiler creates a set of 1 or

more .vm files (just like .class files). Each method in the Jack app is translated

into a VM function written in the VM language

� Thus, a VM file consists of one or more VM functions.

Execution:

� At any given point of time, only one VM function is executing (the “current

function”), while 0 or more functions are waiting for it to terminate (the functions

up the “calling hierarchy”)

� For example, a main function starts running; at some point we may reach the

command call factorial, at which point the factorial function starts running;

then we may reach the command call mult, at which point the mult function starts

running, while both main and factorial are waiting for it to terminate

The stack: a global data structure, used to save and restore the resources (memory

segments) of all the VM functions up the calling hierarchy (e.g. main and factorial).

The tip of this stack if the working stack of the current function (e.g. mult).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 21

Lecture plan

Goal: Specify and implement a VM model and language:

Method: (a) specify the abstraction (stack, memory segments, commands)

(b) propose how to implement the abstraction over the Hack platform.

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

This lecture Next lecture

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 22

Implementation

VM implementation options:

� Software-based (e.g. emulate the VM model using Java)

� Translator-based (e. g. translate VM programs into the Hack machine language)

� Hardware-based (realize the VM model using dedicated memory and registers)

Two well-known translator-based implementations:

JVM: Javac translates Java programs into bytecode;
The JVM translates the bytecode into
the machine language of the host computer

CLR: C# compiler translates C# programs into IL code;
The CLR translated the IL code into
the machine language of the host computer.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 23

Software implementation: Our VM emulator (part of the course software suite)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 24

VM implementation on the Hack platform

The stack: a global data structure, used to save
and restore the resources of all the VM
functions up the calling hierarchy.

The tip of this stack if the working stack of the
current function

static, constant, temp, pointer:
Global memory segments, all functions
see the same four segments

local,argument,this,that:

these segments are local at the function level;
each function sees its own, private copy of
each one of these four segments

The challenge:
represent all these logical constructs on the
same single physical address space -- the host
RAM.

Host
RAM

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 25

VM implementation on the Hack platform

Basic idea: the mapping of the stack and the
global segments on the RAM is easy (fixed);
the mapping of the function-level segments is
dynamic, using pointers

The stack: mapped on RAM[256 ... 2047];
The stack pointer is kept in RAM address SP

static: mapped on RAM[16 ... 255];
each segment reference static i appearing in a
VM file named f is compiled to the assembly
language symbol f.i (recall that the assembler further
maps such symbols to the RAM, from address 16 onward)

local,argument,this,that: these method-level
segments are mapped somewhere from address
2048 onward, in an area called “heap”. The base
addresses of these segments are kept in RAM
addresses LCL, ARG, THIS, and THAT. Access to
the i-th entry of any of these segments is
implemented by accessing RAM[segmentBase + i]

constant: a truly a virtual segment:
access to constant i is implemented by
supplying the constant i.

pointer: discussed later.

Statics

3

12

. . .

4

5

14

15

0

1

13

2

THIS

THAT

SP

LCL

ARG

TEMP

255

. . .
16

General
purpose

2047

. . .
256

2048

Stack

Heap. . .

Host
RAM

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 26

VM implementation on the Hack platform

Statics

3

12

. . .

4

5

14

15

0

1

13

2

THIS

THAT

SP

LCL

ARG

TEMP

255

. . .
16

General
purpose

2047

. . .
256

2048

Stack

Heap. . .

Host
RAM

Practice exercises

Now that we know how the memory segments are
mapped on the host RAM, we can write Hack
commands that realize the various VM commands.
for example, let us write the Hack code that
implements the following VM commands:

� push constant 1

� pop static 7 (suppose it appears in a VM file named f)

� push constant 5

� add

� pop local 2

� eq

Tips:

1. The implementation of any one of these VM
commands requires several Hack assembly
commands involving pointer arithmetic
(using commands like A=M)

2. If you run out of registers (you have only two ...),
you may use R13, R14, and R15.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 27

Proposed VM translator implementation: Parser module

Parser: Handles the parsing of a single .vm file, and encapsulates access to the input code. It reads VM commands,
parses them, and provides convenient access to their components. In addition, it removes all white space and comments.

Routine Arguments Returns Function

Constructor Input file /
stream

--
Opens the input file/stream and gets ready to
parse it.

hasMoreCommands -- boolean Are there more commands in the input?

advance -- --

Reads the next command from the input and
makes it the current command. Should be called
only if hasMoreCommands is true.
Initially there is no current command.

commandType --

C_ARITHMETIC, C_PUSH,
C_POP, C_LABEL, C_GOTO,
C_IF, C_FUNCTION,
C_RETURN, C_CALL

Returns the type of the current VM command.
C_ARITHMETIC is returned for all the arithmetic
commands.

arg1 -- string

Returns the first arg. of the current command.
In the case of C_ARITHMETIC, the command itself
(add, sub, etc.) is returned. Should not be called
if the current command is C_RETURN.

arg2 -- int

Returns the second argument of the current
command. Should be called only if the current
command is C_PUSH, C_POP, C_FUNCTION, or
C_CALL.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 28

Proposed VM translator implementation: CodeWriter module

CodeWriter: Translates VM commands into Hack assembly code.

Routine Arguments Returns Function

Constructor Output file / stream -- Opens the output file/stream and gets ready to
write into it.

setFileName fileName (string) -- Informs the code writer that the translation of a
new VM file is started.

writeArithmetic command (string) -- Writes the assembly code that is the translation
of the given arithmetic command.

WritePushPop command (C_PUSH or
C_POP),

segment (string),

index (int)

-- Writes the assembly code that is the translation
of the given command, where command is either
C_PUSH or C_POP.

Close -- -- Closes the output file.

Comment: More routines will be added to this module in the next lecture / chapter 8.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 29

Perspective

� In this lecture we began the process of
building a compiler

� Modern compiler architecture:

� Front-end (translates from a high-level language to a VM language)

� Back-end (translates from the VM language to the machine
language of some target hardware platform)

� Brief history of virtual machines:

� 1970’s: p-Code

� 1990’s: Java’s JVM

� 2000’s: Microsoft .NET

� A full blown VM implementation typically also includes a common software library
(can be viewed as a mini, portable OS).

� We will build such a mini OS later in the course.

. . .

VM language

RISC
machine
language

Hack
CISC

machine
language

. . .
written in

a high-level
language

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

TranslatorVM
emulator

Some Other
language Jack

Some
compiler Some Other

compiler
compiler

. . .Some
language

. . .

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 30

The big picture

� JVM

� Java

� Java compiler

� JRE

� CLR

� C#

� C# compiler

� .NET base
class library

� VM

� Jack

� Jack compiler

� Mini OS

� 7, 8

� 9

� 10, 11

� 12

(Book chapters and

Course projects)

