From 68713c9d8913a1b39e3690dd69f50c002872e110 Mon Sep 17 00:00:00 2001 From: Yuchen Pei Date: Mon, 25 Mar 2019 15:22:55 +0100 Subject: minor --- posts/2019-03-13-a-tail-of-two-densities.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'posts') diff --git a/posts/2019-03-13-a-tail-of-two-densities.md b/posts/2019-03-13-a-tail-of-two-densities.md index a096b25..41a3b57 100644 --- a/posts/2019-03-13-a-tail-of-two-densities.md +++ b/posts/2019-03-13-a-tail-of-two-densities.md @@ -934,8 +934,8 @@ $$D(p || q) = \mathbb E_{\xi \sim p} \log {p(\xi) \over q(\xi)} \le \max_y {\log Comparing the quantity in Claim 11 ($\epsilon(e^\epsilon - 1)$) with the quantity above ($\epsilon$), we arrive at the conclusion. $\square$ -**Claim 13 (Hoeffding\'s -Inequality)**. Let $L_i$ be independent random variables with +**Claim 13 ([Hoeffding\'s Inequality](https://en.wikipedia.org/wiki/Hoeffding%27s_inequality))**. +Let $L_i$ be independent random variables with $|L_i| \le b$, and let $L = L_1 + ... + L_k$, then for $t > 0$, $$\mathbb P(L - \mathbb E L \ge t) \le \exp(- {t^2 \over 2 k b^2}).$$ @@ -981,7 +981,7 @@ $$\mathbb P(L(q || p) \le k a(\epsilon) + \sqrt{2 k \epsilon^2 \log \beta^{-1}}) By Claim 1 we arrive at the conclusion. $\square$ -**Claim 15 (Azuma\'s Inequality)**. +**Claim 15 ([Azuma\'s Inequality](https://en.wikipedia.org/wiki/Azuma%27s_inequality))**. Let $X_{0 : k}$ be a [supermartingale](https://en.wikipedia.org/wiki/Martingale_(probability_theory)). If $|X_i - X_{i - 1}| \le b$, then -- cgit v1.2.3