From ad0ca1c4a77cd1f367ba2eb9ba0b4bef707f71c1 Mon Sep 17 00:00:00 2001 From: Yuchen Pei Date: Wed, 20 Mar 2019 11:07:49 +0100 Subject: minor fix --- posts/2019-03-13-a-tail-of-two-densities.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'posts') diff --git a/posts/2019-03-13-a-tail-of-two-densities.md b/posts/2019-03-13-a-tail-of-two-densities.md index 6467a5f..dea9d1f 100644 --- a/posts/2019-03-13-a-tail-of-two-densities.md +++ b/posts/2019-03-13-a-tail-of-two-densities.md @@ -703,7 +703,7 @@ $$\sigma > \epsilon^{-1} (\sqrt{\log e^\alpha \delta^{-2}}) S_f$$ or -$$\sigma > \epsilon^{-1} (\sqrt{1 + \alpha} \vee \sqrt{(\log (2 \pi)^{-1} e^\alpha \delta^{-2})_+}).$$ +$$\sigma > \epsilon^{-1} (\sqrt{1 + \alpha} \vee \sqrt{(\log (2 \pi)^{-1} e^\alpha \delta^{-2})_+}) S_f.$$ The second bound is similar to and slightly better than the one in Theorem A.1 of Dwork-Roth 2013, where $\alpha = 1$: -- cgit v1.2.3