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Abstract

The largest eigenvalue of GUE (Gaussian Unitary Ensemble) and HBM (Hermition Brow-

nian Motion) are path-functional and path-transform of Brownian motions, which are a

scaling limit of random walks. The discrete transform is a directed first passage percolation

model, which can be connected naturally with RSK (Robinson-Schensted-Knuth) correspon-

dence. Meanwhile this model describes discrete directed random polymer with temperature 0.

Changing the temperature to positive can lead to a geometric version of the path transform.

These path transforms give rise to various versions of RSK correspondence and Pitman’s

theorems, including classical and new ones. This dissertation surveys this development and

makes an attempt to generalise Pitman’s theorem to Brownian motion with variable drift by

inferring from the discrete model involving RSK correspondence.

v



Chapter 1

Combinatorics

1.1 Introduction

The story dates back to the study of Ulam’s problem of distribution of l1(σ), the length

of longest increasing subsequence of permutation σ chosen uniformly randomly in the late

1990s. l1(σ) is the length of the first row of Young’s tableau obtained by performing Robinson-

Schensted algorithm on σ. In the work [BDJ99], this connection is used to obtain the asymp-

totics of this distribution, and it turns out to the the Tracy-Widom law [TW94] that is

the distribution of the largest eigenvalue of Gaussian Unitary Ensemble. Then in 1999, ex-

tending the result to Robinson-Schensted-Knuth correspondence, [Joh00] obtained similar

asymptotics for directed last passage percolation and totally asymmetric simple exclusion

processes. Meanwhile, the shape of tableaux obtained by RSK correspondence can be viewed

as a path transform of the walks, either random or deterministic, which in dimension 2

concurs with Pitman’s classical 2M − X theorem. Motivated by these connections and

Burke’s theorem for M/M/1 queues which also interpretes Pitman’s theorem, around 2000

[OY01, OY02, O’C03a, O’C03b] found an extension for Burke’s theorem, associated the path

transforms with series of queues in series and generalised Pitman’s theorem to multidimen-

sional setting. About the same time Pitman’s theorem was also considered in geometric

setting by [MY00] and geometric RSK was developed by [Kir01, NY04]. However it was not

until about 2010s were the system and connection of path-transform, RSK correspondence

and multi-dimensional Pitman’s theorem built up in geometric lifting and continuum contexts

[COSZ11, OW11, BO11, O’C12], some of which were also motivated by the development of

directed random polymer and KPZ equation and universality class.

The rest of this dissertation is organised as follows. In the rest of this chapter, an in-

troduction to relevant combinatroics including RSK correspondence and Schur functions are

given. In Chapter 2 we consider the RSK correspondence with random input and write
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down its dynamics. In Chapter 3 the development of Pitman’s 2M −X theorem is recorded,

whose generalisation was attempted by using scaling limit of RSK in Chapter 4. In Cahpter

5 various versions of RSK correspondence and Pitman’s theorem are surveyed. And the

dissertation is closed in Chapter 6 with a brief summary of the applications.

1.2 Young Diagrams and Tableaux

Young diagrams and tableaux are combinatorial objects useful in group representation theory,

for example they can be used for describing all irriducible representations of symmetric groups

Sn. For an introduction see e.g. [Sag00, Ful97, Sta01]. A Young diagram λ is a vector

λ = (λ1, . . . , λk) for some k ∈ N and all λi ∈ N+ such that λ1 ≥ · · · ≥ λk > 0. It is visualised

as an array of left adjusted boxes, with the ith row having λi boxes. By denoting |λ| as sum

of entries of λ, each diagram λ can also be regarded as a partition of |λ|. We denote the

length of a diagram λ by l(λ) as the number of rows in it. For example, in Figure 1.1 is a

Young diagram λ = (4, 3, 1, 1) ` 9 with length l(λ) = 4.

Figure 1.1: A Young diagram λ = (4, 3, 1, 1) with 4 rows

A Young tableau P is a Young diagram λ filled with positive integer numbers. We call

the associated Young diagram its shape, denoted as λ = shP . Similarly, the type of a tableau

P , denoted as tyP , is a composition of |shP | whose i’th entry is the number of i’s in P . A

Young tableau P is called standard if the numbers are uniquely picked from {1, 2, . . . , |shP |}
and strictly increasing along columns and rows, called semistandard if numbers are strictly

increasing along columns and weakly increasing along rows. We denote by Tl and T sl as

the set of semistandard and standard tableaux with entries in [l] respectively. Also denote

T :=
⋃
l≥1 Tl as the set of all semistandard tableaux. In Figure 1.2 are a tableau, a standard

tableau, a semistandard tableau with shape (4, 3, 1, 1). And for example, the type of the

first tableau is (0, 0, 2, 2, 1, 0, 2, 1, 1, 0, 0, 0, . . . ). From next section on we always restrict the

possibility of numbers appearing in tableaux to [n] or [k], hence we can get rid of the infinite

0’s in the type of tableaux by restricting them on Nn and Nk respectively.

2
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1 3 4 7

2 5 9
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1 1 2 4

2 3 4
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Figure 1.2: From left to right: a Young tableau, a standard Young tableau and a semistandard
Young tableau

1.3 RSK Correspondence, Classical Definitions

For any λ ` n denote fλ to be the number of standard tableaux with shape λ. It is the

multiplicity and dimension of Specht module Sλ in regular representation of symmetric group

Sn (see e.g. [Sag00]). Therefore we have∑
λ`n

(fλ)2 = n!. (1.1)

By dividing both side of this identity by n! we obtain the Plancherel measure of Sn on the

set of all partitions / Young diagrams:

P pl (λ) =
(fλ)2

|Sn|
.

The algebraic result (1.1) is proved in a totally combinatorial way by constructing a one-one

correspondence between Sn and set of pairs of standard tableaux with the same shape.

σ ↔ (P,Q).

Such a correspondence was defined independently by Robinson and Schensted [Rob38, Sch61],

called Robinson-Schensted correspondence. It was later generalised by Knuth [Knu70]. For

clarity, we first describe the generalisation, i.e. Robinson-Schensted-Knuth algorithm for

generalised permutations.

Fix n and k as positive integers. A generalised permutation π is a pair of vectors (π̂, π̌)T ∈
([n]× [k])N in lexicographical order, i.e.

π =

(
π̂1 . . . π̂N

π̌1 . . . π̌N

)
, (π̂i, π̌i) ∈ [n]× [k]∀i

3



satisfying

Either π̂i < π̂i+1 Or if π̂i = π̂i+1 then π̌i ≤ π̌i+1, i = 1, . . . , N − 1.

We denote by GP the set of all generalised permutations. The upper row π̂ can be seen as

an “index” and the lower the “content” of the generalised permutation, as will be seen from

the algorithm.

The algorithm reads the paired entries one by one and update the output by proceeding

row insertion to get paired semistandard tableaux ((P (i), Q(i)) : i = 1, . . . , N) with shP (i) =

shQ(i),∀i, as follows:

1. Initialise P (0) = Q(0) = ∅; set i = 1.

2. If i > N then the algorithm is done.

3. Set j ← 1, P (i)← P (i− 1), Q(i)← Q(i− 1).

4. Let π̌i displace the most west number s in jth row bigger than π̌i and let π̌i ← s. If s

does not exist then append π̌i at the end of the row and let π̌i ←∞.

5. If π̌i 6=∞ then set j ← j + 1 and goto step 4; otherwise, append a box to Q(i) so that

shP (i) = shQ(i), fill the box with π̂i, set i← i+ 1 and goto step 2.

The two output tableaux P (i) and Q(i) are called insertion tableau (or P-tableau) and record-

ing tableau (or Q-tableau) respectively. In the algorithm, Step 4 is called a row insertion, as

it insert a number into a row of P-tableau. We denote by P (π) := P (N) and Q(π) := Q(N)

the resultant tableaux. Clearly the P-tableau only depends on π̌, therefore we can also write

P (π̌) := P (π). For example, set n = 4 and k = 3, in Figure 1.3 are P- and Q- tableaux of

generalised permutation

π =

(
1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4

1 1 1 1 2 3 3 3 1 1 2 2 3 1 1 1 2 2 2 2 2 2 3

)
. (1.2)

The RSK algorithm can take various inputs and give different versions of output. For

example, a generalised permutation π can be indentified with a n× k matrix D = (ξij) such

that

ξij = #{l ∈ [N ] : (π̂l, π̌l) = (i, j)};

4



P (π) = 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3

2 2 2 3 3

3 3

Q(π) = 1 1 1 1 1 1 1 1 2 3 3 3 3 3 4 4

2 2 2 2 3

3 3

Figure 1.3: The output tableaux of π in (1.2).

in this case we write D(π) := D. Conversely each non-negative integer matrix D = (ξij) ∈
M(N)n×k can be turned into a generalised permutation(

1d11 . . . 1d1k . . . idij . . . ndn1 . . . ndnk

1d11 . . . kd1k . . . jdij . . . 1dn1 . . . kdnk

)

where il stands for i i . . . i︸ ︷︷ ︸
l i′s

. We can write D’s associated generalised permutation as π(D).

For example, the permutation π in (1.2) is identified with 4× 3 matrix D:

π ↔ D =


4 1 3

2 2 1

3 5 0

0 1 1

 .

Thus the RSK algorithm can take a n × k matrix as an input instead, and we write

(P (D), Q(D)) := (P (π(D)), Q(π(D))). We will treat the row dimension of D as time, and

due to the fact that the lower rows in D corresponds to righter pairs in π, it is better that

we denote P (m) and Q(m) as the output after operating on all the pairs corresponding to

the first m rows in D.

RSK algorithm is a bijective map between M(N)n×k and {(P,Q) ∈ Tk×Tn : shP = shQ}.
This is why it’s called a correspondence.

Example 1.1 (Original RS correspondence and permutations). For any permutation σ ∈ Sn,

its two-line form can be identified with a generalised permutation

π = σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
.
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After RSK algorithm the resultant tableaux P (π) and Q(π) are both standard. This defines

the original RS correspondence, i.e. a bijection between Sn and {(P,Q) ∈ T sn × T sn : shP =

shQ}, which gives the identity (1.1). Note that the matrix D(π) is its permutation matrix,

i.e. D ∈ {0, 1}n×n with (D)ij = δσ(i),j.

If we replace the words “row” with “column” and “west” with “north” in RSK algorithm

we have RSK with column insertion. which ristricted on Sn is still well-defined. We can still

obtain a pair of output standard tableaux. They are transpose of the tableaux produced

from row insertion, hence a bijection again.

Take n = 9 and σ = (286159347) for example, then the corresponding tableaux P and Q

after RS algorithm are

P = 1 3 4 7

2 5 9

6

8

Q = 1 2 6 9

3 5 8

4

7

Example 1.2 (RS correspondence). It should be noted that in some literature, e.g. [O’C03a]

RS correspondence is defined by restricting RSK on {π ∈ GP : π̂ = (1, . . . , n)}. For any

such π we call the vector w := π̌ a word from the alphabet [k]. The associated input

matrices are now the ones with only one non-zero entry per row. The image of the map is

{(P,Q) ∈ Tk × T sn : shP = shQ}. and it’s also a bijection.

As stated in Example 1.1, when entries of π̂ and π̌ are distinct, the row and column

insertions have no qualitative difference. However this can’t be generalised to common input

matrices, as a transpose of semistandard tableau does not remain semistandard necessarily.

Therefore a modified column insertion is introduced. Such an operation is no different from

column insertion except the numbers for inserting displace the most north entry greater

than or equal to them. This makes insertion tableaux semistandard. However the recording

tableaux are still not guaranteed semistandard. The solution is to restrict the domain of the

algorithm to the set of matrices D with only 0 and 1 entries. And by doing so, all pairs of

entries in the generalised permutation are distinct, resulting in the transpose of Q tableaux

being semistandard. And once again it’s a bijection, but between {0, 1}n×k and Tk × T tn ,

where T tn is the set of tableaux whose transpose are in Tn. This algorithm is called dual RSK

correspondence, denoted as RSK’. Similarly the output of RSK’ are denoted as P ′(π) and

Q′(π).

The dual RSK correspondence got its name for its dual-ish relationship with RSK. To see

this, for any vector a = (a1, a2, . . . , an), denote ar = (an, an−1, . . . , a1) to be the reverse of a.

6



Because the row insertions and modified column insertions commute, the insertion tableau

obtained from one algorithms is the same as those obtained from the other with an reversed

input:

P (π̌) = P ′(π̌r). (1.3)

Specifically, if we consider the case in Example 1.1, i.e. restricting on permutations, then

since the modified column insertion is the same as normal column insertion which produces

a transposed P-tableau, the reversed permutation produces the transpose of the P-tableau

of the permutation.

P (σr) = P ′(σ) = P (σ)t. (1.4)

The shape of the output tableaux is connected to the longest increasing subsequence. An

increasing (or decreasing) subsequence of a generalised permutation π is a subsequence of

pairs (
π̂i1 . . . π̂il
π̌i1 . . . π̌il

)

such that (π̌i1 , . . . , π̌il) is an increasing (or decreasing) subsequence of π̌. A m-increasing

(or decreasing) subsequence of π is a subsequence composed of m disjoint increasing (or

decreasing) subsequences. The definition of weakly increasing (or decreasing) subsequences

are as expected. Denote lm(π) as the length of longest weakly m-increasing subsequence of

π The result is due to Greene:

Theorem 1.3 (Greene’s Theorem). Denote λ = shP (π), then

λ1 + · · ·+ λm = lm(π).

By (1.3) the shape of RSK’ output has a similar result for length of longest weakly m-

decreasing subsequences, which in the case of original RS, is the transpose of the shape by

(1.4). Also, when taking m = 1, this theorem states the length of longest weakly increasing

subsequence is the same as the length of the first row of output tableaux of RSK.

7



1.4 RSK Algorithm, Alternative Definitions

In the previous section, we successfully reduce the input from the bulky repetitive gener-

alised permutations to decent condensed matrices. It appears the output tableaux also have

redundant information. In this section we represent the insertion and recording tableaux in a

lighter way and give an alternative definition of RSK algorithm. As a side note, most of this

section is inspired by the construction of tropical RSK correspondence (see e.g. [COSZ11])

and shouldn’t be original. For (x, y) ∈ Rl × Rl+1, define an interlacing relationship ≺ by

x ≺ y ⇔ y1 ≥ x1 ≥ y2 ≥ x2 ≥ · · · ≥ xl ≥ yl+1.

And define GTl the set of l-level Gelfand-Tsetlin cones by

GTl = {(x1, . . . , xl) ∈ R1 × · · · × Rl : x1 ≺ · · · ≺ xl}.

Then it can be easily checked that the output tableaux P (n) and Q(n) at time n can be

identified with Gelfand Tsetlin cones

P (n) = (shP 1(n), . . . , shP k(n)) ∈ GTk;

Q(n) = (shQ1(n), . . . , shQn(n)) ∈ GTn,
(1.5)

where P j(n) ⊂ P (n) and Qj(n) ⊂ Q(n) stand for the largest subtableaux of P (n) and

Q(n) containing numbers 1, . . . , j in them (call them jth subtableaux of P (n) and Q(n)

respectively). However there are quite a few 0 entries in both cones. To discard some

redundant information, we deonte Lji (m) := (shP j(m))i for 1 ≤ i ≤ j ≤ k and Lj(m) :=

(Lj1, . . . , L
j
j)(m). The previous correspondence (1.5) can be written as

P (n) = (L1(n), L2(n), . . . , Lk(n)); (1.6)

Q(n) = (Lk(1), Lk(2), . . . , Lk(n)). (1.7)

For example the output of π in (1.2) can be identified as

P (4) = ((9), (15, 3), (16, 5, 2));

Q(4) = ((8, 0, 0), (9, 4, 0), (14, 5, 2), (16, 5, 2)).

Note that Lji (m) 6= 0 only if i ≤ j∧m. Also the fact that the shape of P (n) and Q(n) are the

same is reflected by the same Lk(n) as the last entries of them in (1.6) and (1.7). Therefore

8



the information of P (n) and Q(n) can be represented as

(P,Q)(n) = (Lji (m))(i,j,m)∈Bn,k ,

where

Bn,k = {(i, j,m) : 1 ≤ i ≤ j ∧m, 1 ≤ j ≤ k,m = n} (1.8)

t{(i, j,m) : 1 ≤ i ≤ j ∧m, 1 ≤ m ≤ n− 1, j = k}. (1.9)

The set Bn,k has exactly nk elements. So we can identify the output with an n by k matrix

D̃ = (ξ̃ij) with P (n) occupying the northwest chunk and Q(n) the southeast and sharing the

border as their common shape.

ξ̃ij =

L
i+j−1
i (n) 1 ≤ i ≤ k ∧ n, 1 ≤ j ≤ k − i+ 1;

Lkk−j+1(k + n− i− j + 1) 1 ≤ j ≤ k, k − j + 1 ≤ i ≤ n.

For example, the output of (1.2) can be written as

(P,Q)(n) = D̃ =


9 15 16

3 5 14

2 5 9

2 4 8


So we can define RSK correspondence as an onto map from M(N)n×k to itself.

Now we can describe the RSK algorithm in a more compact way, which will be echoed

in Section 5.2. Given two l-vectors a and b, a row insertion inserting b into a is a function

r : (Nl × Nl)→ (Nl × Nl−1) defined by

r : (a, b) 7→ (a′, b′) s.t.

a′1 = b1 + a1; a′i = bi + (a′i−1 ∨ ai); b′i−1 = bi + (ai + a′i−1)− (ai−1 + a′i), 2 ≤ i ≤ l.

Denote Li(m) := (Lii, . . . , L
k
i )(m) for 1 ≤ i ≤ k as the ith row of P (m) and ξm :=

(ξm1, . . . , ξmk) to be the mth row of input matrix . The RSK algorithm is re-described as

below.

1. Initialise P (0) = ∅, i.e. Lji (0) = 0, 1 ≤ i ≤ j ≤ k. Set m = 1.

2. If m > n then we are done.

9



3. Set i=1.

4. Insert ξm into Li(m − 1) to update ξm and obtain Li(m): (Li(m), ξm) ← r(Li(m −
1), ξm).

5. If i < m ∧ k then i← i+ 1 and go to step 4; otherwise m← m+ 1 and go to step 2.

Clearly, (Lji (m))1≤i≤j∧m,1≤j≤k,1≤m≤n covers all the information about both tableaux up to

time n. Actually in the spirit of Greene’s theorem, L has a very intuitive interpretation and

nice structure.

For any m×j matrix A with non-negative integer entries, denote Tl(A) to be the maximal

sum of l non-intersecting directed paths in D from (1, 1), (1, 2), . . . , (1, l) to (j− l+1,m), (j−
l + 2,m), . . . , (j,m) respectively. More precisely for matrix A ∈M(N)m×j,

Tl(A) = max
π1:(1,1)→(m,j−l+1),π2:(1,2)→(m,j−l+2),...,πl:(1,l)→(m,j)

π1,π2,...,πl are non-intersecting

∑
(i,p)∈π1∪···∪πl

(A)i,p, (1.10)

where (i, j)→ (i′, j′) is a set

π := {(i1, j1), (i2, j2), . . . ,(iN , jN) :

(i1, j1) = (i, j), (iN ,jN) = (i′, j′), (ip+1, jp+1)− (ip, jp) = (0, 1) or (1, 0), ∀p ∈ [N ]},

where N = i′ − i+ j′ − j + 1.

Then by Greene’s theorem,L satisfies

Lj1(m) + · · ·+ Ljl (m) = Tl(D
j(m)), (1.11)

where Dj(m) = (ξi,p)m×j is a submatrix of D consisting its first m rows and j columns.

We close this section by giving one more form of input for RSK correspondence, the

walks. For a n × k non-negative integer matrix D, define its associated k-dimensional walk

(S1(m), . . . , Sk(m))0≤m≤n on Nk by

Sj(0) = 0; Sj(m) = Sj(m− 1) + ξm,j, ∀j = 1, . . . , k.

Clearly given such a walk, we can also recover the matrix D. Similarly we define Sr =

(Sk, Sk−1, . . . , S1) as a reversed (in index) walk. This kind of input will be used when we

consider the shape of output tableaux as a path transform of the walks.

To sum up, we’ve defined RSK correspondence taking input as a generalised permutation

π, a matrix D, a permutation σ, a word w or a walk S; and giving output as a pair of

10



tableaux (P,Q) with the same shape, (Lji (m)) the components of the tableaux or a matrix

D̃.

1.5 Schur functions

Enumerative combinatorial objects tend to have many definitions. A notorious example is

Catalan numbers, which according to [Sta01] can be interpreted in at least 66 ways. The all

important Schur functions, a.k.a. Schur polynomials are slightly better, and we record four

definitions appearing in many texts introducing these functions. Define for any tableau T

xT = xtyT and for arbitrary sequence µ, xµ is defined as

xµ :=
∞∏
i=1

xµii .

A Schur function associated with a partition λ ` n is a symmetric function, thus a formal

series and can take an arbitrary number of arguments.

sλ(x) =
∑

T∈T :shT=λ

xT =
∑
µ

Kλµx
µ

where the sum in the second identity is over composite µ of n, and Kλµ are Kostka numbers,

the multiplicity of Specht module Sµ in permutation module Mλ.

When restricting on l = l(λ) variables. It can also be expressed as

sλ(x1, . . . , xl) = det((hλi−i+j)l×l) =
aλ+δ(x)

aδ(x)
,

The determinant in the first identity is called Jacobi-Trudi determinant, where h are complete

homogeneous functions, defined by

hn =


∑

µ x
µ, n ≥ 0;

0, n < 0.

where the sum is over the set of all compositions µ of n. In the second identity δ :=

(l − 1, l − 2, . . . , 0) and for any ν ∈ Nl, aν are alternating polynomials, defined by

aν(x) = det((x
νj
i )l×l).

The last quotient form of Schur functions is the original definition by Schur over 110 years

11



ago.

As a use of Schur function, Cauchy’s identity states

∑
λ

sλ(x)sλ(y) =
∏
i,j≥1

1

1− xiyj
.

Both sides are generating functions, but for any m, k ∈ N+ by restricting x = (x1, . . . , xm)

and y = (y1, . . . , yk) and xiyj ∈ (0, 1),∀(i, j) ∈ [m]× [k], it still holds:

∑
λ

sλ(x)sλ(y) =
m∏
i=1

k∏
j=1

1

1− xiyj
. (1.12)
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Chapter 2

RSK with Random Input

RSK taking random input has been worked on in [BDJ99, Joh00, O’C03a, O’C03b] where

two friendly distributions of the shape of output are involved. One is Plancherel measure of

symmetric group Sn. By picking a permutation in Sn uniformly at random and perform RSK

correspondence on it, the push-forward law for the shape of output tableaux is the Plancherel

measure.

P(shP (n) = λ) =
(fλ)2

n!
.

As mentioned before the fact that it’s a probability measure is equivalent to the identity (1.1).

This choice of measure was considered in [BDJ99] and the asymptotics of Ln1 (n) = (shP (n))1

was obtained (the attractor is Tracy-Widom law[TW94]).

The other friendly measure is Schur measure and corresponds to the Cauchy identity

(1.12), as is constructed below.

Let the entries (ξij) of D ∈ M(N)n×k be independent random variables, then the corre-

sponding walks (Si)1≤i≤k are k independent random walks:

Sj(m) =
m∑
i=1

ξij, j = 1, . . . , k.

For m′ ≥ 0 denote

Sj(m,m+m′) := ξm,j + ξm+1,j + · · ·+ ξm+m′,j

to be the distance the walks travel between time m and m + m′. Then by (1.11) Lk1(n) =

13



(shP (n))1 can be written as a path functional of of random walks:

Lk1(n) = max
1≤i1≤···≤ik−1≤n

{S1(1, i1) + S2(i1, i2) + · · ·+ Sk−1(ik−2, ik−1) + Sk(ik−1, n)}. (2.1)

2.1 Dynamics

Let us calculate the dynamics of the shape. The calculation in this section follows similar

cases in [O’C03a]. Since the increment ξij in each time step of the walks are independent, it

is clear that (P,Q) are markov. However, if we choose good distribution for ξmi’s, the shape

of P can also be a Markov process.

Lemma 2.1. For (m, i) ∈ [n]× [k] let pm and qi be positive numbers such that pmqi < 1. Let

ξmi be geometrically distributed with parameter 1− pmqi, i.e.

P(ξmi = j) = (1− pmqi)(pmqi)j, j ∈ N.

Then Lk is a (time-inhomogeneous) Markov chain on Nk with transition kernel from time

m− 1 to time m being

Πm
L (γ, λ) =

(
k∏
i=1

(1− pmqi)

)
sλ(q)p

|λ|
m

sγ(q)p
|γ|
m

Iγ≺λ,

where Iγ≺λ is the indicate function of {γ ≺ λ}.

Proof. Since RSK algorithm is a bijection, given two tableaux P ′ and Q′ and knowing the

dimension of the matrix, we can denote the matrix as (ξ(P ′, Q′)i,j). And since the tyP (m)

and tyQ(m) corresponds to the column and row sums of the input matrix, we have a very

symmetric form of the law of (P (m), Q(m)):

P(P (m) = P ′, Q(m) = Q′) = P(ξli = ξ(P ′, Q′)li, 1 ≤ l ≤ m, 1 ≤ i ≤ k)

=
∏

1≤l≤m
1≤i≤k

(1− plqi)(plqi)ξ(P
′,Q′)mi

= am(p, q)pQ
′
qP
′IshP ′=shQ′ ,

where

am(p, q) =
∏

1≤l≤m
1≤i≤k

(1− plqi).
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Therefore by summing up according to the shape the marginal law of each tableau can also

be calculated:

P(Q(n) = Q′) =
∑

P ′:shP ′=shQ′

P(P (n) = P ′, Q(n) = Q′)

=
∑

P ′:shP ′=shQ′

an(p, q)pQ
′
qP
′
= an(p, q)pQ

′
sshQ′(q).

P(P (n) = P ′) =
∑

Q′:shQ′=shP ′

P(Q(n) = Q′, P (n) = P ′) (2.2)

=
∑

Q′:shQ′=shP ′

an(q, p)qP
′
pQ
′
= an(q, p)qP

′
sshP ′(p). (2.3)

As we already point out in (1.7), Q(m) is determined by the history of shape upto time

m. Hence given such a history λ(1), . . . , λ(m) we can write Q(m) as Q(λ(1), . . . , λ(m)). For

x ∈ Nl and integer m ≥ l, denote by GTm(x) the set of m-level non-negative integer Gelfand-

Tsetlin cones with bottom line (x1, . . . , xl, 0, . . . , 0), i.e. x appended with m− l 0’s. Now we

can compute the candidate for a “transition kernel” for Lk thanks to the friendly geometric

distribution:

P(Lk(m+ 1) = λ|Lk(1) = γ(1), . . . Lk(m) = γ(m))

=
P(Lk(1) = γ(1), . . . , Lk(m) = γ(m), Lk(m+ 1) = λ)

P(Lk(1) = γ(1), . . . , Lk(m) = γ(m))

=
P(Q(m+ 1) = Q(γ(1), . . . , γ(m), λ))

P(Q(m) = Q(γ(1), . . . , γ(m)))

=
am+1(p, q)p

Q(γ(1),...,γ(m),λ)
1:m+1 sλ(q)

am(p, q)p
Q(γ(1),...,γ(m))
1:m sγ(m)(q)

=

(
k∏
i=1

(1− pm+1qi)

)
sλ(q)

sγ(m)(q)

p
|λ|
m+1

p
|γ(m)|
m+1

Iγ(m)≺λ.

And we arrive at our conclusion.

By summing up the joint of (P (m), Q(m)) over fixed shape λ, the distribution of the

shape of output is

P(Lk(m) = λ) =
∑

(P ′,Q′):shP ′=shQ′=λ

P(P (m) = P ′, Q(m) = Q′) = an(p, q)sλ(p)sλ(q). (2.4)

This is called Schur measure [Oko01]. Since it’s a probability measure, by summing up over
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all possible shapes we can recover the Cauchy’s identity (1.12).
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Chapter 3

Pitman’s Theorem

Pitman’s 2M −X theorem gives an alternative definition of 3-dimensional Bessel process.

3.1 3-Dimensional Bessel Process

Definition 3.1. A d-dimensional Bessel process Besd starting at x is defined as the radial

part of d-dimensional Brownian motion starting at y with |y| = x, i.e. (Xt, t ≥ 0)
d
=

(
√
B1(t)2 + · · ·+Bd(t)2, t ≥ 0), where B1, . . . , Bd are d independent Brownian motions with

(B1, . . . , Bd)(0) = y.

Bessel processes get their names due to the connection to modified Bessel functions with

their transition kernels. The 3-dimensional Bessel process is of interest due to its various

interpretations. One construction is by conditioning a one-dimensional Brownian motion

never to hit 0 after time 0 in Doob’s sense. Another, due to Pitman [Pit75], is one of the

focuses of this dissertation.

Theorem 3.2 (Pitman’s Theorem). Let B be a 1-dimensional Brownian motion and M be

its past maximum: Mt = sups≤tBt. Then path transform (2Mt−Bt, t ≥ 0) is a 3-dimensional

Bessel process and satisfies SDE

dXt = dWt +
1

Xt

dt.

The mere fact that 2M −X is Markov is already a miracle.
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3.2 Brownian Motion with a Constant Drift

Generally for any one-dimensional diffusion process X, define a path transform P by

PX(t) := 2M(t)−X(t) = 2 sup
s≤t

X(s)−X(t);

This transform reflects the path on its previous maximum which is generalised as Pitman

transform in [BBO05]. It is a problem of interest whether PX is still Markov and what

its transition kernel or generator can be. In [RP81] Rogers and Pitman extend Pitman’s

theorem to X being a one-dimensional Brownian motion with a constant drift c:

Xt = Bc = x+Bt + ct.

They achieve this by using a criterion that a function φ on a given Markov process X is

still Markov, which itself is important. Suppose the state space of X is (S,S) and function

φ : (S,S)→ (S ′,S ′). Define kernel Φ by Φf = f ◦ φ. The criterion is

Theorem 3.3 ([RP81]). Let X be a Markov process on (S,S) with kernel (Pt)t≥0. Let

Λ : S →MS be a kernel and (Qt)t≥0 be a family of kernels on S ′. If the following conditions

are satisfied,

1. ΛΦ = I, the identity kernel on Cb(S
′),

2. ΛPt = QtΛ.

then

P(X0 ∈ A|φ(X0) = y) = Λ(y, A)

implies

P(Xt ∈ A|φ(Xt) = y;φ(Xs), 0 ≤ s ≤ t) = Λ(y, A). (3.1)

Note (3.1) means φ(X) is a Markov process with kernel (Qt). The second condition is

the so called intertwining relationship between (Pt) and (Qt) and we call Λ the intertwining

kernel. This formula is used extensively in literature.

In the context of determining wether P(Bc) is Markov and finding its dynamics, [RP81]

examines X = (M c −Bc,M c) and φ(x) = x1 + x2, works out its intertwining kernel Λc:

Λc(y, (u, v)) ∝ ec(v−u),
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and applies Theorem 3.3.

Theorem 3.4 (Pitman’s Theoremc). The process P(Bc) is Markov and has the same dis-

tribution as the radial part of a 3-dimensional Brownian motion with a drift with magnitude

|c|, denoted as Bes3,c. It satisfies the SDE

dXt = dWt + c coth cXtdt.

Moreover, like the Brownian motion case, Bes3,c can be constructed by conditioning on

Bc starting at x never hitting 0.
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Chapter 4

Scaling from RSK to Pitman

In this chapter we attempt to prove Pitman’s theorem for more generalised case: Brownian

motion with a variable drift in a similar way as the proof of Theorem 3.4. Thanks to Theorem

3.3 we would be halfway to success if we can guess the intertwining kernel. We are going to

achieve it via scaling RSK with random input. We first test this method by recovering Λc

and then move on to Brownian motion with variable drift in the same way. The former is

done in a non-rigorous way since we are recovering a known result.

4.1 The Plan

Now set k = 2 , then Lk = shP has two entries. By (2.1)

L2
1(m) = S2(m) + max

1≤l≤m
{S1(l)− S2(l − 1)};

L2
2(m) = S1(m) + min

1≤l≤m
{S2(l − 1)− S1(l)};

Therefore by taking

A = S1 − S2 and M(m) = max
l≤m

X(l);

we have

(L2
1 − L2

2)(m) = 2 max
1≤l≤m

{S1(l)− S2(l − 1)} − (S1(m)− S2(m))

= (2M − A)(m) + ε(m) ≈ (2M − A)(m), (4.1)
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where

ε(m) = 2 max
1≤l≤m

{S1(l)− S2(l − 1)} − 2 max
1≤l≤m

{S1(l)− S2(l)}.

When m is large enough the terms ε(m) is insignificant compared to other accumulative

terms like A(m) and M(m), thus should tend to 0 in suitable sense after scaling. Therefore

we are going to neglect it at some stage.

This seems to be a discrete version of transform P. Therefore by Donsker’s invariance

principle, we can scale the discrete object to obtain Pitman’s theorem for various diffu-

sion processes. For any discrete-time process (X(n), n ≥ 0), its diffusion scaling limit is a

continuous-time process (χ(t), t ≥ 0) defined by

(χt)t≥0 = lim
N→∞

(
X(Nt)√

N

)
t≥0

in distribution. (4.2)

Now denote scaling limit of A and M by α and µ respectively. Our first step is to identify

them after picking (pi)i=1,...,k (qj)j=1,2 carefully. Then by (4.1), Pα is the scaling limit of

L2
1 − L2

2. We can expect from the fact L is a Markov chain (Lemma 2.1) that α should also

be Markov. To emulate the method used in [RP81] to reveal the dynamics of PBc we need

to guess the intertwining kernel Λ defined by

Λc
t(x, (u, v))dudv := P((M c −Bc,M c)(t) ∈ (du, dv)|PBc(t) = x,PBc(s) : 0 ≤ s < t).

Therefore the second step is to infer the same kernel in discrete setting

Λ̃m(x, (u, v)) := P((M − A,M)(m) = (u, v)|(L2
1 − L2

2)(m) = x, (L2
1 − L2

2)(i) : 0 ≤ i < m).

And once this is done we can verify the intertwining relationship, drop RSK setting and

prove it rigorously.

4.2 Choosing Parameters

In our model, parameters of the distribution of the entries of the input matrix have full

control of what we can expect of α, therefore we want to pick pm’s and qi’s to make α the

process we want. Let us start with the Brownian motion with a constant drift, the case

already studied and proved in [RP81] and mentioned in the previous chapter.
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Lemma 4.1. Given a c > 0, for every N in the definition of scaling limit (4.2), let

pi = p := (4− 2
√

3)c, ∀i;

q1 =
1

2c
+

1√
N
, q2 = q :=

1

2c
;

then

α
d
= Bc.

Proof. The proof is quite straightforward. We specify the mean and variance of ξi1− ξi2 and

thus find the scaling limit for the “difference” random walk A(m) =
∑m

i=1(ξi1 − ξi2). The

mean and variance for a geometric distribution with parameter 1− pqi are pqi
1−pqi and pqi

(1−pqi)2 .

Therefore

E(ξi1 − ξi2) =
pq1

1− pq1

− pq2

1− pq2

=
p(q1 − q2)

(1− pq1)(1− pq2)
=

1√
N

p

(1− p(q + 1√
N

))(1− pq)

=
1√
N

p

(1− pq)2
+

1

N

p

(1− pq)2(1− p(q + 1√
N

))
(4.3)

=:
1√
N

p

(1− pq)2
+

1

N
δ1(N) =

1√
N
c+

1

N
δ1(N).

Var(ξi1 − ξi2) = Varξi1 + Varξi2 =
p(q + 1√

N
)

(1− p(q + 1√
N

))2
+

pq

(1− pq)2

=
2pq

(1− pq)2
+

p(q + 1√
N

)

(1− p(q + 1√
N

))2
− pq

(1− pq)2

=
2pq

(1− pq)2
+

1√
N

p

(1− pq)2

1− q(q + 1√
N

)p2

(1− p(q + 1√
N

))2
(4.4)

=:
2pq

(1− pq)2
+

1√
N
δ2(N) = 1 +

1√
N
δ2(N).

We’ll show that in the scaling limit, the terms 1
N
δ1 and 1√

N
δ2 can be ignored, which is quite

intuitive. Denote Â as the normalisation of A:

Â(m) =
A(m)−mE(ξi1 − ξi2)√

Var(ξi1 − ξi2)
,
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then by Donsker’s theorem, Â scales into a one-dimensional Brownian motion, that is(
A(Nt)−NtE(ξi1 − ξi2)√

N
√

Var(ξi1 − ξi2)
, t ≥ 0

)
→ B0.

On the right hand side,

A(Nt)−NtE(ξi1 − ξi2)√
N
√

Var(ξi1 − ξi2)
=
A(Nt)−Nt( 1√

N
c+ 1

N
δ1(N))

√
N
√

1 + 1√
N
δ2(N)

=
1

1 + 1√
N
δ2(N)

(
A(Nt)√

N
− ct

)
− 1√

N

tδ1(N)

1 + 1√
N
δ2(N)

.

So it suffices to show that δ1 and δ2 are both bounded, which is trivial. For N large enough,

0 ≤ δ1(N) =
p

(1− pq)2

1

1− p(q + 1√
N

)
≤ p

(1− pq)2

1

1− 2pq
.

0 ≤ δ2(N) =
p

(1− pq)2

1− q(q + 1√
N

)p2

(1− p(q + 1√
N

))2
≤ p

(1− pq)2

1− q2p2

(1− 2pq)2
.

4.3 The Intertwining Kernel

In order to find the intertwining kernel Λc, we need to clarify the links between the information

given by the tableau obtained from RSK algorithm and the various quantities of interest. We

suppress the time arguments of each process.

Lemma 4.2. Rewrite the tableau P as P = (P1, P2, P3), where P1 := L1
1 and P2 := L2

1 − L1
1

are the number of 1’s and 2’s in the first row of P respectively and P3 := L2
2 is the number

of 2′s (i.e. the length) in the second row. Then

S1 = P1, S2 = P2 + P3, A = P1 − P2 − P3,

M − A = P2 +
ε

2
, M = P1 − P3 +

ε

2
, 2M − A = P1 + P2 − P3 + ε.

Proof. The random walk S1 is the 1st column sum of the input matrix which corresponds to

the number of 1’s in the P -tableau, hence

S1 = P1. (4.5)
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Because the sum of two random walks is the same as the sum of all entries of D which

coincides with the sum of P1, P2 and P3 as the number of boxes. Hence by (4.5),

S2 = P2 + P3. (4.6)

By the definition of A and (4.6),

A = S1 − S2 = P1 − P2 − P3. (4.7)

By (4.1) and since P1 and P2 represent all the boxes in row 1 and P3 for row 2,

2M − A = L2
1 − L2

2 + ε = P1 + P2 − P3 + ε. (4.8)

Combining (4.7) with (4.8) we obtain the remaining two equalities.

Now we are ready to calculate the discrete intertwining kernel. First using the formula

(2.2) of distribution of P , we have for valid (P ′2, x, y),

P(P2(m) = P ′2, L
2
1(m) + L2

2(m) = x, L2
1(m)− L2

2(m) = y)

= am(p, q)q
P1(m)
1 q

P2(m)+P3(m)
2 s(x+y

2
,x−y

2
)(p).

Since

P1 + P2 = L2
1 =

L2
1 + L2

2

2
+
L2

1 − L2
2

2
;

P3 = L2
2 =

L2
1 + L2

2

2
− L2

1 − L2
2

2
,

we can express P1 and P2 + P3 in terms of P2, L
2
1 + L2

2 and L2
1 − L2

2.

P1 =
1

2
((L2

1 + L2
2) + (L2

1 − L2
2))− P2;

P2 + P3 = P2 +
1

2
((L2

1 + L2
2)− (L2

1 − L2
2)).

Also to reduce mess we define polynomial s̃x,y by

s̃x,y(p) = s(x+y
2
,x−y

2
)(p).

Therefore the joint of (P2, L
2
1 + L2

2, L
2
1 − L2

2) can rewritten as

P(P2(m) = P ′2, L
2
1(m) + L2

2(m) = x, L2
1(m)− L2

2(m) = y) = am(p, q)q
x+y
2
−P ′2

1 q
x−y
2

+P ′2
2 s̃x,y(p).
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Dnote by Dy (or DP ′2,y
) the sets of (P ′2, x) (or x) such that (P ′2, x, y) as (P2, L

2
1 +L2

2, L
2
1−L2

2)

can form a valid P -tableau. Dividing the previous formula by summation over {L2
1−L2

2 = y}
we can obtain the conditional law of (P2, L

2
1 + L2

2) given L2
1 − L2

2:

P(P2 = P ′2, L
2
1 + L2

2 = x|L2
1 − L2

2 = y) =
am(p, q)q

x+y
2
−P ′2

1 q
x−y
2

+P ′2
2 s̃x,y(p)∑

(P ′2,x)∈Dy am(p, q)q
x+y
2
−P ′2

1 q
x−y
2

+P ′2
2 s̃x,y(p)

=
q
x+y
2
−P ′2

1 q
x−y
2

+P ′2
2 s̃x,y(p)∑

(P ′2,x)∈Dy q
x+y
2
−P ′2

1 q
x−y
2

+P ′2
2 s̃x,y(p)

=: Zyq
x+y
2
−P ′2

1 q
x−y
2

+P ′2
2 s̃x,y(p),

By Lemma 4.2 (note we are not doing rigorous calculation in (4.9) by neglecting ε),

Λ̃m(y, (P ′2, z)) = P(M − A = P ′2,M = z|2M − A = y)

= IP ′2+z=yP
(
P2 +

ε

2
= P ′2|L2

1 − L2
2 + ε = y

)
= IP ′2+z=yP(P2 = P ′2|L2

1 − L2
2 = y) (4.9)

= IP ′2+z=y

∑
x∈DP ′2,y

P(P2 = P ′2, L
2
1 + L2

2 = x|L2
1 − L2

2 = y)

= IP ′2+z=yZy
∑

x∈DP ′2,y

q
x+y
2
−P ′2

1 q
x−y
2

+P ′2
2 s̃x,y(p). (4.10)

By Lemma 4.2

P2 =
(P1 + P2 − P3)− (P1 − P2 − P3)

2
=

(L2
1 − L2

2)− A
2

,

thus the difference of random walk A′ corresponding to the P -tableau formed by (P ′2, x, y)

as (P2, L
2
1 + L2

2, L
2
1 − L2

2) satisfies

P ′2 =
y − A′

2
. (4.11)

We can also take a close look at the valid domain for x under the summation. It means

(P ′2, x, y) as (P2, L
2
1 + L2

2, L
2
1 − L2

2) can form a valid tableau

(P ′1, P
′
2, P

′
3) = (

x+ y

2
− P ′2, P ′2,

x− y
2

), (4.12)

i.e.

P ′2 ≥ 0; P ′1 ≥ P ′3 ≥ 0,
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which by (4.12) is equivalent to

x ≥ y ≥ P ′2 ≥ 0.

Since P ′2 and y are fixed in the summation (4.10), the valid domain for x is [y,∞)∩N. Hence

by (4.10) and (4.11)

Λ̃Nt(y, (P
′
2, z)) = IP ′2+z=yZy

∑
x≥y

q
x+y
2
− y−A

′
2

1 q
x−y
2

+ y−A′
2

2 s̃x,y(p)

= IP ′2+z=yZ̃yq
A′
2

1 q
−A
′

2
2 = Z̃y

(
q + 1√

N

q

)A′
2

= IP ′2+z=yZ̃y

(
1 +

1

q
√
N

)q√N · 1
2q
· A
′

√
N

∝ IP ′2+z=y

(
1 +

1

q
√
N

)q√Nc z−P ′2√
N

.

What remains to be done is a scaling. Although we can already see the natural exponential

hidden in the limit, let us finish it a bit more clearly (but not rigorously),

Λc
t(y, (u, v)) = P(µt − αt ∈ du, µt ∈ dv|2µt − α2 = y)/(dudv)

= lim
ε→0

1

4ε2
P(µt − αt ∈ (u− ε, u+ ε], µt ∈ (v − ε, v + ε]|2µt − α2 = y)

= lim
ε→0

lim
N→∞

1

4ε2
P
(

(M − A,M)(Nt)√
N

∈ Sε(u, v)
∣∣∣(2M − A)(Nt)√

N
= y

)
= lim

N→∞
lim
εN→0

1

4ε2N
P
(

(M − A,M)(Nt)√
N

∈ SεN (u, v)
∣∣∣(2M − A)(Nt)√

N
= y

)
,

where SεN (u, v) = (u − εN , u + εN ] × (v − εN , v + εN ] is a square centred at u, v with side

length 2εN . For each N , by taking εN = 1
2
√
N

, there can be only one integer point in

S√NεN (
√
Nu,
√
Nv). And since the distance between this point and the centre (

√
Nu,
√
Nv)

is no larger than
√

2 for all N , for similicity we can identify them with each other. Hence

the kernel is now

Λt(y, (u, v)) = lim
N→∞

NP
(

(M − A,M)(Nt) ∈ S√NεN (
√
Nu,
√
Nv)

∣∣∣(2M − A)(Nt) =
√
Ny
)

= lim
N→∞

NP
(

(M − A,M)(Nt) = (
√
Nu,
√
Nv)

∣∣∣(2M − A)(Nt) =
√
Ny
)

= lim
N→∞

NΛd
Nt

(√
Ny, (

√
Nu,
√
Nv)

)
= lim

N→∞
NZ̃N,y

(
1 +

1

q
√
N

)q√Nc(u−v)

= ( lim
N→∞

NZ̃N,y)e
c(u−v) ∝ ec(u−v).
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This is exactly what was obtained in proof of Theorem 1 in [RP81].

4.4 Any Luck in Generalisation?

In the previous sections, by making pm’s to be constant, we are able to recover the Pitman’s

theorem for a Brownian motion with a constant drift. So one may think, by letting param-

eters vary, we may be able to prove Pitman theorem for more general diffusion processes.

Unfortunately this is an illusion.

For any given function f , let us evaluate the parameters with a general setting

pm = f
(m
N

)
, q1 = q +

1

N
, q2 = q;

and see what happens to the scaling limit. As in the proof of Lemma 4.1, the mean and

variance of the difference ξi2 − ξi2 is (just replace p with pi in (4.3) and (4.4))

E(ξi1 − ξi2) =
1√
N

pi
(1− piq)2

+
1

N

pi
(1− piq)2(1− pi(q + 1√

N
))
,

Var(ξi1 − ξi2) =
2piq

(1− piq)2
+

1√
N

pi
(1− piq)2

1− q(q + 1√
N

)p2
i

(1− pi(q + 1√
N

))2
.

We don’t need to work rigorously, as all we want is a guess of the kernel Λ, verify the

intertwining relationship and use Theorem 3.3 to achieve the result. Therefore we discard

the terms with lower order:

E(ξi1 − ξi2) ∼ 1√
N

f( i
N

)

(1− f( i
N

)q)2
,

Var(ξi1 − ξi2) ∼
2f( i

N
)q

(1− f( i
N

)q)2
.

Hence by Donsker’s theorem, the scaling limit α should satisfy the SDE:

dαt =

√
2qf(t)

(1− qf(t))2
dWt +

f(t)

(1− qf(t))2
dt.

where dWt is Brownian motion. But what we want is a Brownian motion with a drift, so let

us perform a deterministic time change, define an increasing function T : [0,∞)→ [0,∞) by

27



the quadratic variation of α

T (t) = [α]t =

∫ t

0

2q
f(s)

(1− qf(s))2
ds,

and time-changed process α̃ by

α̃T (t) = αt.

Then since

[α̃]t = [α]T−1(t) = [α]s
∣∣
[α]s=t

= t;

Eα̃t = EαT−1(t) =

∫ T−1(t)

0

f(s)

(1− qf(s))2
ds =

∫ t

0

1

2q
du,

α̃ should be a Brownian motion with a drift 1
2q

. Therefore whatever f we choose, we end

up with the constant drift case. Thus even if we are able to guess the intertwining kernel, it

is not likely to lead to Pitman’s theorem for more general processes using this RSK setting,

unfortunately.
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Chapter 5

Extensions of Pitman and RSK

Till now we have only focused on 2 dimensional discrete and continuous Pitman’s Theorem,

but there are more, so is true for RSK correspondence, which we only considered multidimen-

sional discrete case. In this chapter a survey of generalisation of Pitman’s theorem and RSK

correspondence to multi-dimension, geometric lifting and continuum models is presented.

5.1 Multi-dimension

In the preceeding two chapters we fix k = 2 and connect Pitman’s theorem with a path

transform of random walks generated by RSK correspondence

L2
1(m) = max

0≤l≤m
{S1(l) + S2(m)− S2(l − 1)};

L2
2(m) = min

0≤l≤m
{S2(l − 1) + S1(m)− S1(l)}.

If we consider RS correspondence on words (Example 1.2), then since each row of input

matrix has only 1 non-zero entry, the above formula can be rewritten as:

L2
1(m) = max

0≤l≤m
{S1(l) + S2(m)− S2(l)};

L2
2(m) = min

0≤l≤m
{S2(l) + S1(m)− S1(l)}.

(5.1)

This leads to the definition of operators 4 and 5 , constructed in [O’C03b]:

(x4 y)(m) := min
0≤l≤m

{x(l) + y(m)− y(l)};

(x5 y)(m) := max
0≤l≤m

{x(l) + y(m)− y(l)};
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Let the order of transform be from left to right in a sequence of operations, e.g.

x1 4x2 5x3 5x4 = ((x1 4x2)5x3)5x4.

Then for general k a path tranform Gk for discrete-time process can be defined:

G1(x) = x;

G2(x, y) = (x4 y, y 5x);

Gk(x1, . . . , xk) = (x1 4 . . . 4xk, G
k−1(x2 5x1, x3 5 (x1 4x2), . . . , xk 5 (x1 4 . . . 4xk−1))).

For convenience we write ·(·)r := (·(·))r, for example we write Gk(S)r instead of (Gk(S))r.

Immediately by (5.1) we have given a word w ∈ [2]n,

shP (w) = G2(Sr)r,

For general k, there’s a connection between dual RSK correspondence and the path transform:

Theorem 5.1 (Theorem 3.1 in [O’C03b]). Given a word w ∈ [k]n and its associated walk

S(w),

shP ′(w) = Gk(S(w))r. (5.2)

This is proved by constructing “a series of queues in series” out of the walk and connecting

the structure of P ′(w) and Gk(S) by interpreting both in the dynamics of the queues.

Then it can be readily shown:

Corollary 5.2. Given a word w ∈ [k]n and its associated walk S(w),

shP (w) = Gk(S(w)r)r.

Proof. Let us define a transform on words ∗ : [k]n → [k]n by

w∗ = (k + 1− wn, k + 1− wn−1, . . . , k + 1− w1).

We explain this tranformation threefold: as for the word w it reverts both the word and

the alphabet; as for w’s associated input matrix D(w), it rotates the matrix for 180 degrees

around its “centre” (also two reversion); as for the walk S(w), it reverts the time as well

as the index of random walks. It turns out the input matrix interpretation is the most
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proof-friendly, as we can decompose the transform into two:

w(D)∗ = w(hv(D)) (5.3)

where h and v reverts the rows and columns of the matrix. Then immediate we have for any

matrix C,

w(h(C)) = w(C)r; (5.4)

S(v(C)) = S(C)r. (5.5)

On the other hand, a duality theorem (see e.g. Section A.1 of [Ful97]) reveals that

shP (w) = shP (w∗). (5.6)

That is, this transform conserves the shape of P-tableaux! This is quite amazing. Therefore

shP (w)
(5.6)
= shP (w∗)

(5.3)
= shP (w(h(v(D))))

(5.4)
= shP (w(v(D))r)

(1.3)
= shP ′(w(v(D)))

(5.2)
= Gk(S(v(D)))r

(5.5)
= Gk(Sr)r.

As a side note, the conclusion of the preceding Corollary is a bit clumsy in that two

reverting are involved on the right hand side. To make it look better, just define a similar

family of transforms Hk by

H1(x) = x;

H2(x, y) = (x5 y, y 4x);

Hk(x1, . . . , xk) = (Hk−1(x1 5 (xk 4 . . . 4x2), x2 5 (xk 4 . . . 4x3), . . . , xk−1 5xk), xk 4 . . . 4x1).

Then it can be easily verified that Hk(x) = Gk(xr)r and hence shP (w) = Hk(S(w)).

The path transform is connected to conditioned random walks when RS correspondence

takes random input. Denote W := {x ∈ Rk : x1 ≤ · · · ≤ xk} as the k-dimensional Wyel

chamber and Ω := {x ∈ Rk : xr ∈ W}. Also denote by (p1, . . . , pk) the distribution of

increment of the random walk, that is, P(S(n)−S(n− 1) = ei) = pi. [O’C03a] and [O’C03b]

show similar results concerning the law of shP (S) and shP ′(S).

Theorem 5.3 ([O’C03a]). If p1 > p2 > · · · > pk > 0, then shP (S) has the same law as S

conditioned on never exiting Ω.
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Theorem 5.4 ([O’C03b]). If p1 > p2 > · · · > pk > 0, then shP ′(S) has the same law as S

conditioned on never exiting Ω.

They are the same result since P ′(S) = P ′(S(w)) = P (S(wr)) and that S(wr)
d
= S(w)

due that fact that reverting the word amounts to reverting time. As a corollary, we reach

the conclusion of discrete k-dimensional Pitman’s theorem:

Corollary 5.5 ([O’C03b]). For a k-dimensional random walk S with 0 < p1 < p2 < · · · < pk,

the path transform Gk(S) has the same law as S conditioned on never exiting W .

Proof. We prove it in a different way from [O’C03b]. Since by Theorem 5.3.

shP (Sr)
d
= Sr conditioned on never exiting Ω,

by reverting it,

shP (Sr)r
d
= S conditioned on never exiting W,

the conclusion is evident by Corollary 5.2.

The conditionings above can be constructed using discrete Doob h-transform, see e.g.

[O’C03a].

In the continuous setting for f, g ∈ D0(R+) where D0 = {f a cadlag : f(0) = 0}, we

define operators ⊗ and � by

(f ⊗ g)(t) = inf
0≤s≤t

{f(s) + g(t)− g(s)};

(f � g)(t) = sup
0≤s≤t

{f(s) + g(t)− g(s)}.

Again let the default order of the operations be from left to right. Define a family of path

transforms Γk : D0(R+)k → D0(R+)k recursively by

Γ2(f1, f2) = (f1 ⊗ f2, f2 � f1);

Γk(f1, . . . , fk) = (f1 ⊗ f2 ⊗ · · · ⊗ fk,Γk−1(f2 � f1, f3 � (f1 ⊗ f2), . . . , fk � (f1 ⊗ · · · ⊗ fk−1))).

Let B̃ be a k-dimensional Brownian motion starting in W killed upon reaching ∂W =

W\W̊ = W\{x ∈ Rk : x1 < · · · < xk} after time 0. Let B̂ be constructed by Doob-h

transforming B̃ with positive (on W̊ ) harmonic function h defined as h(x) =
∏

i<j(xj − xi).
B̂ is the so-called Dyson’s k-dimensional non-colliding Brownian motion.
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Such a construction can be found in, for example [O’C04, War07]. This process satisfies

a system of SDE’s:

dB̂i
t = dW i

t +
∑
j 6=i

1

B̂i
t − B̂

j
t

dt.

In [OY02] a sequence of stationary M/M/1 queues are considered. Let N1, . . . , Nk be inde-

pendent poisson processes with rate µ1 < · · · < µk respectively, they obtain a conclusion

similar to Corollary 5.5.

Theorem 5.6 ([OY02]). The path transform Γk(N) has the same law as N conditioned on

never exiting W .

To prove this, they first analyse a sequence of stationary M/M/1 queues in a similar

way as the first series of queues in [O’C03b]. The difference is, the queues are are processe

on R rather than the non-negatives. This allows them them derive a symmetry result of t

processes and hence the theorem. They then use a convergence argument to show the same

result for “homogeneous” queues (N1, . . . , N1). After that, by applying Donsker’s theorem,

they arrive at the conclusion for Brownian motion.

Theorem 5.7 ([OY02]). For a k-dimensional Brownian motion B,

Γk(B)
d
= B̂.

Actually, it is well-known that B̂ has the law of eigenvalues of a Hermition Brownian

motion [Dys62]. A different proof of (Γk(B))k = B̂k via embedding interlacing Brownian

motions into Gelfand-Tsetlin cone is given in [War07].

So we’ve introduced multidimensional discrete Pitman’s theorem from RSK and path

transform Gk, and continuous Pitman’s theorem from transform Γk, what is missing is a

continuous RSK. Although we no longer need it to connect Γk with Pitman, we can still

define it and obtain a intertwining relationship between the kernel of input Brownian motion

and output Dyson’s non-colliding Brownian motion [O’C03a]. To construct it, note that

the space dimension k is unchanged as discrete while the time dimension n has become

continuous. Hence there’s no immediate analogy of input matrix D and we’d rather define it

taking input as continuous version of walk S, i.e. continuous functions f1, . . . , fk ∈ C([0, 1])

such that fi(0) = 0,∀i. The continuous RSK algorithm is defined in the spirit of the shape

interpretation of output tableaux (1.6)(1.7). Since the analogy of shape Lj of jth subtableaux
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of tableau P is

Lj ↔ Γj(fj, fj−1, . . . , f1)r;

The correspondence is defined as a mapping from C([0, 1])k to GTk × C0([0, 1],Ω) by

(f1, . . . , fk)↔ (P̃ , Q̃); where

P̃ = (Γ1(f1)(1)r,Γ2(f2, f1)(1)r, . . . ,Γk(fk, fk−1, . . . , f1)(1)r);

Q̃ = (Γk(fk, fk−1, . . . , f1)(t)r)0≤t≤1.

5.2 Geometric Lifting

The transforms defined before are based on max-plus algebra. For example, given k-dimensional

walks (Si)i∈[k] the length of the first row of shP (S) at time n are

Gk
k(Sk, Sk−1, . . . , S1) = S1 5 . . . 5Sk = max

φ:(1,1)→(n,k)

∑
(i,j)∈φ

ξij.

If we replace (∨,+) with (+,×), it turns to conventional algebra, under which RSK and

Pitman’s theorem are described in this section.

The discrete RSK in conventional algebra is called tropical RSK and has strikingly similar

properties as the classical one. However, as is said earlier in Section 1.4, the alternative

definition of classical RSK is derived from tropical RSK. Given a n× k input matrix D with

positive real entries, we can define L in the same way as L as in (1.10)(1.11) except replacing

“∨” with “+” and “+” with “×”:

Tl(A) =
∑

π1:(1,1)→(m,j−l+1),π2:(1,2)→(m,j−l+2),...,πl:(1,l)→(m,j)
π1,π2,...,πl are non-intersecting

∏
(i,p)∈π1∪···∪πl

(A)i,p, A ∈M(R+)m×j;

Lj1(m)Lj2(m) . . .Ljl (m) = Tl(Dj(m)).

(5.7)

And we can define the RSK correspodence in the same way as in (1.6)(1.7) by

P(n) = (Lj(n))1≤j≤k;

Q(n) = (Lk(m))1≤m≤n,

such that for i, j ∈ [k] the ith “row” of P-tableaux is Li(m) = (Lii,Li+1
i , . . . ,Lki )(m) and the
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shape of jth subtableau of P(m) is Lj(m) = (Lj1,L
j
2, . . . ,L

j
j)(m).

As an argument in [COSZ11], it should be noted that in the definition of Tl (5.7), Lji (m)

makes sense only when j ≤ k and i ≤ j ∧m (although a trivial exception is Lm+1
m+1(m) = 1).

Also the shape of P(n) and Q(n), i.e. Lk(n) are the same, the elements of P(n) and Q(n)

that are “informative” are hence

(P ,Q)(n)↔ (Lji (m))(i,j,m)∈Bn,k ,

where Bn,k is as defined in (1.8). The set Bn,k has exactly nk element. So we can define

the RSK correspondence from set of n× k matrices onto itself [COSZ11] by D ↔ D̃, where

D̃ = (ξ̃ij) with

ξ̃ij =

L
i+j−1
i (n) 1 ≤ i ≤ k ∧ n, 1 ≤ j ≤ k − i+ 1;

Lkk−j+1(k + n− i− j + 1) 1 ≤ j ≤ k, k − j + 1 ≤ i ≤ n.

Rather than computing the L’s in the painful way as (5.7), there’s also an algorithm to

calculate them in a time-evolution way, like in the classical RSK correspondence. It is called

tropical RSK algorithm and is constructed in [NY04], based on tropical RSK correspondence

introduced in [Kir01]. The identity of the output of the algorithm and the L’s can be found

in [NY04, COSZ11].

A geometric row insertion inserts a vector into the P-tableau in a similar way to row

insertion into P -tableau in the classical setting. Given two l-vectors α and β, a row insertion

inserting β into α is a function r : (Rl
+ × Rl

+)→ (Rl
+ × Rl−1

+ ) defined by

r : (α, β) 7→ (α′, β′) s.t.

α′1 = β1α1; α′i = βi(α
′
i−1 + αi); β′i−1 = βi

αiα
′
i−1

αi−1α′i
, 2 ≤ i ≤ l.

Denote el1 = (1, 0, . . . , 0) to be unit l-vector. the geometric row insertion can be extended

to accept argument el1:

r : (α = el1, β) 7→ (α′, β′) s.t.

α′1 = β1α1; α′i = βi(α
′
i−1 + αi); β′i−1 = 1, 2 ≤ i ≤ l.

The second output β′ in this case does not matter, as will be seen in the algorithm. Denote

ξm := (ξm1, . . . , ξmk) to be the mth row of input matrix. The tropical RSK algorithm is

described as below.
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1. Initialise P(0) = L(0) to be empty, meaning a convention Li(0) = ek+1−i
1 , i ∈ [k]. Set

m = 1.

2. If m > n then we are done.

3. Set i=1.

4. Insert ξm into Li(m − 1) to update ξm and obtain Li(m): (Li(m), ξm) ← r(Li(m −
1), ξm).

5. If i < m ∧ k then i← i+ 1 and go to step 4; otherwise m← m+ 1 and go to step 2.

To consider tropical RSK with random input, let us first define Whittaker functions. For

λ ∈ Rk, let ψλ be the eigenfunction of

H := ∆− 2
k−1∑
i=1

exi+1−xi

with eigenvalue ‖λ‖2
2 such that (e−µ(x)ψλ(x))x is bounded and limx→∞,x∈Ω e

−µ(x)ψλ(x) = 1.

ψλ are so called class-one Whittaker functions. For y ∈ Rk
+ define function Ψλ by Ψλ(y) =

ψ−λ(log y1, log y2, . . . , log yk).

Recall in Chapter 2 in order to obtain a Markovian shape of output tableaux of classical

RSK correspondence with “solvable” dynamics we set (ξij) to be independently exponentially

distributed with parameter 1 − piqj such that 0 < piqj < 1,∀i ∈ [n], j ∈ [k].In the tropical

RSK setting, to obtain a related evolution of the shape, (ξij) also need to be independent

random variables, but distributed according to inverse-gamma distribution with parameter

p̃i+ q̃j such that p̃i+ q̃j > 0,∀i ∈ [n], j ∈ [k]. The inverse-gamma distribution with parameter

θ has the density function 1
Γ(θ)

x−θ−1e−
1
x .

This is worked in [COSZ11]. With such ξij’s, the intertwining kernel from the shape Lk

to the tableau P can be written down, so is the transition kernel of Markov chain Lk. The

push-forward law of the shape at time n is approached by the law of shape at time n with

initial condition in Rk
+. As an analogue of Schur measure (2.4), it is called Whittaker measure

and written as

P(Lk(n) ∈ dy) =

(∫
ιRk+

sk(λ)
n∏

m=1

k∏
i=1

Γ(q̃m + λi)

Γ(p̃i + q̃m)
Ψp̃(y)Ψ−λ(y)dλ

)
dy∏k
j=1 yj

,

where ι =
√
−1 is the unit imaginary number and sk(λ) = ((2πι)kk!

∏
i 6=j Γ(λi − λj))−1.

Another fact revealing that inverse-gamma is the distribution corresponding to geometric

distribution in classical RSK setting and tropical RSK is the RSK in conventional algebra
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setting is as follows. Set a family of input matrices Dε with entries ξεim being independently

inverse-gamma distributed with parameter ε(p̃i + q̃m). The ε serves as “temperature” and

the algebra turns to max-plus as ε → 0. Let D denote the input matrix whose entries ξim

are independently exponentially distributed with parameter p̃i + q̃m. Then

ε log ξεim
d→ ξim, as ε→ 0.

Moreover, denote L(Dε) to be the output process of Dε via tropical RSK and L(D) to be

the output of D via classical RSK. the remarkable fact is

ε logL(Dε)
d→ L(D)

as processes [COSZ11].

Now consider the continuous setting. The construction can be found in [O’C12]. As is the

case in max-plus algebra continuous setting, we aim to build a path transform of input walk

to obtain the output of RSK. The symmetric group Sk is generated by s1, . . . , sk−1 where

si = (i, i+1) are adjacent transpositions. For any permutation σ ∈ Sk, it can be decomposed

into a shortest product of these transpositions, called reduced decomposition

σ = si1si2 . . . sil .

This is like a (not very efficient) sorting program, in which the worst case corresponds to the

“longest” element of Sk. It is

σk =

(
1 2 . . . k

k k − 1 . . . 1

)

and one of its reduced decompositions is

σk = (s1s2 . . . sk−1)(s1 . . . sk−2) . . . (s1s2)(s1).

Now define operators Ti : C[0, 1]→ Rk by

Tif(t) = f(t) +

(
log

∫ t

0

efi+1(s)−fi(s)ds

)
(ei − ei+1). 1 ≤ i ≤ k − 1. (5.8)

And for any permutation σ with reduced decomposition σ = si1si2 . . . sil ∈ Sk define Tσ by

Tσ = Ti1Ti2 . . . Til .
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This is well-defined, i.e. Tσ does not depend on the choice of the reduced decomposition

[BBO05]. The path transform on k-dimensional continuous functions C([0, 1])k is defined as

Πk := Tσk .

And the RSK correspondence is (to keep consistent with the previous definitions of output

tableaux, we write it slightly different from what is in [O’C12].)

f ↔ (P̃ , Q̃);

P̃ = (Π1(f1),Π2(f2, f1), . . . ,Πk(fk, fk−1, . . . , f1))(1);

Q̃ = (Πk(fk, fk−1, . . . , f1)(t))0≤t≤1.

To see why, note by replacing log
∫ t

0
e in (5.8) with sup0≤s≤t we obtain an alternative definition

of Γk:

Pif(t) := f(t) + sup
0≤s≤t

{fi+1(s)− fi(s)}(ei − ei+1);

Tsi1 ...sil := Ti1 . . . Til ;

Γkf = (Pσkf)r.

This definition first appears in [BBO05] among its generalisations to arbitrary finite Coxeter

groups.

The path-transform Πj, as expected, has the Greene-style property like (1.10)(5.7). For

l ≤ k denote by (φi)i∈[l] arbitrary non-intersecting directed paths from (0, 1), (0, 2), . . . , (0, l)

to (1, k + 1 − l), (1, k + 2 − l), . . . , (1, k) respectively. For each i, φi = (φii, . . . , φ
i
k+i−l) such

that each φij is a path with fixed second coordinate from (tij−1, j) to (tij, j) and 0 = tii−1 ≤
ti1 · · · ≤ tik+i−l−1 ≤ tik+i−l = 1. Denote E(φi) :=

∑k+i−l
j=i fj(t

i
j)− fj(tij−1). Then

((Πkf)1 + · · ·+ (Πkf)l)(1) = log

∫ l∏
i=1

eE(φi)dφ, (5.9)

where the integral is with respect to the Lebesgue measure on the set of non-intersecting

j-tuples up to time t.

Since Πk is the path-transform in geometrical lifting context, we would expect a similar

result to Theorem 5.7, that is, for B a k-dimensional Brownian motion, Πk(B) has the same

law as B conditioned on some event. In the max-plus setting, the event is that the Brownian

motion stays in Ω, this means supt≥0{Bi+1(t) − Bi(t)} = 0, i = 1, . . . , k − 1. Substituting
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supt≥0 with log
∫∞

0
exp, the condition we expect would be concerned with

Ai∞ :=

∫ ∞
0

eBi+1(s)−Bi(s), i = 1, . . . , k − 1. (5.10)

The search for such a condition is brought up in [O’C04] and carried on in [BO11], in which it

is anticipated that ΠkB indeed has the same law as B conditioned on (Ai∞) in an appropriate

limiting sense.

On the other hand, the law of ΠkBµ where Bµ is a k-dimensional Brownian motion with

constant drift µ is given explicitly in [O’C12].

Theorem 5.8 ([O’C12]). The process ΠkBµ is a diffusion whose generator is 1
2
∆+∇ logψµ ·

∇.

When k = 2, this theorem is equivalent to “geometric” Pitman’s theorem, where we

consider

Zµ
t = log

∫ t

0

e2Bµs−Bµt ds = 2Mµ
t −B

µ
t ,

where 2Mµ
t := log

∫ t
0
e2Bµs ds. Then

Theorem 5.9 ([MY00]). The process Zµ is a Brownian motion with a drift, satisfying

dZµ
t = dWt +

d

dx
logKµ(e−x)

∣∣∣
x=Zµt

dt,

where Kµ is Macdonald function.

5.3 Continuum

We briefly construct the RSK correspondence in continuum setting. Only the geometric

RSK is built in [OW11], in a similar way to the construction of tropical RSK from Tl (5.7).

The space for the non-intersecting paths, formerly [n] × [k] in discrete case and [0, 1] × [k]

in continuous case now changes to [0, t] × R. Moreoever, the randomness can infect space

dimension now - for example we can consider a Brownian sheet and space-time white noise

(see e.g. [Wal86]), denoted as W and Ẇ respectively. Recall in discrete setting, thinking of

a Cartesian grid [n]× [k] with the same weights distribution as the input matrix, a directed

path from (1, 1) to (n, k) is the graph of a “random walk bridge” starting at 0 at time 0 and

ending at (k − n)/
√

2 at time (n + k − 2)/
√

2 that is rotated by π/4 and then translated

by (1, 1). Therefore in the continuum setting we can consider a Brownian bridge starting
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at 0 at time 0 and ending at x at time t as an analogue. After scaling, a fixed number

of non-intersecting “random walk bridges” with neighbouring starting and ending points in

the continuum setting are non-intersecting random walks with identical starting and ending

points. Therefore heuristically, the counterpart of (5.9) in continuous setting and Tl in (5.7)

in discrete setting should now be

E exp

(
l∑

i=1

∫ t

0

Ẇ (s,X i
s)ds

)
,

where (X i)i∈[l] are l non-intersecting Brownian bridges starting at 0 at time 0 and ending at

x at time t. However due to the irregularity of white noise, the integrals in the bracket are

distributions rather than functions, whose exponentials make no sense. So in [OW11] it is

instead defined as

Tl(t, x) = p(t, x)lE : exp :

(∫ t

0

l∑
i=1

Ẇ (s,X i
s)ds

)

= p(t, x)l

(
1 +

∞∑
k=1

∫
∆k(t)

∫
Rk
R

(l)
k ((t1, x1), . . . , (tk, xk))W (dt1, dx1) . . .W (dtk, dxk)

)
,

where p(t, x) = (2πt)−1e−x
2/2t, : exp : is wick exponential, ∆k(t) = {0 < t1 < · · · < tk < t}

and R
(l)
k is the k-point correlation function for X. Like in (5.9) and (5.7), the components

(Li)i≥0 of the tableaux are defined recursively:

Tl = L1L2 . . . Ll.

Then the RSK correspondence for Brownian sheet on [0, t]× R are defined by

W |[0,t]×R ↔ (P,Q);

P = (Ll(t, ·)|[0,∞), l ≥ 1);

Q = (Ll(t, ·)|(−∞,0], l ≥ 1);

shP = shQ = (Ll(t, 0), l ≥ 1).

For smooth potential φ ∈ C∞([0, t]× R) of the environment, the RSK can be defined in the

same way, except the partition functions can be directly defined as

p(t, x)lE exp

(
l∑

i=1

∫ t

0

φ(s,X i
s)ds

)
,
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since φ is smooth.
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Chapter 6

Applications

The results we have presented so far has many applications. In this chapter we mention some

connections between them and random matrices, directed random polymers, corner growth

models, simple exclusion processes, Kardar-Parisi-Zhang equation and universality class.

A k-dimensional Gaussian Unitary Ensemble (GUE) is a random matrix A ∈ M(C)k×k

defined as

(A)ij =


1√
2
(ζij + ιζji) 1 ≤ i < j ≤ k;

ζii 1 ≤ i = j ≤ k;

1√
2
(ζji − ιζij) 1 ≤ j < i ≤ k,

where (ζij)k×k are k2 independent standard normal distributed random variables. A Her-

mitian Brownian motion (HBM) is defined in the same way with (ζij) being independent

Brownian motions. A (n, k)-Laguerre Unitary Ensemble (LUE) is defined as a random Her-

mitian matrix AA∗, where A = X + iY ∈M(C)k×n with (X)ij
d
= (Y )ij ∼ N(0, 1/2) being all

independent. The first connection between RSK and random matrices, as was mentioned in

Section 5.1 is: the k-dimensional non-colliding Brownian motion B̂ has the same distribution

as the eigenvalue processes of a k-dimensional HBM [Dys62].

Given an n × k matrix D, the directed path from (1, 1) to (n, k) with minimal sum, i.e.

Gk
1(S(D)) describes the ground state energy of a directed first passage percolation model,

which is the 0-temperature case of discrete directed random polymer. The free energy of the

latter with temperater β−1 is −β−1 log
∑

φ:(1,1)→(n,k)

∏
(i,j)∈φ exp(−βξij). On the other hand,

the directed path from (1, 1) to (n, k) with maximal sum, i.e. Lk1(n) is related to the partition

function of the directed last percolation model, which is again 0-temperature case of discrete

directed random polymer. The partition function of continuous and continuum directed

random polymer are also sometimes motivations for studying RSK correspondence (e.g. L1
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in Section 5.3) and path transforms (e.g. exp(Πk
1(Bk, . . . , B1)(1))), see [OW11, O’C12].

Thinking of the grid N2
+ for a directed last passage percolation model, we can associate

it with a corner growth model. To do this, first define

AL(m) = {(n, k) ∈ N2
+ : Lk1(n) + k + n− 1 ≤ m}+ [−1, 0]2.

Then clearly Lk1(n) + k + n− 1 = m means (n, k) ∈ AL(m). By rotating AL(m) around the

origin anti-clockwisely by π/4 and scaling (enlarging) it by
√

2, we obtain a corner growth

model, which corresponds to a discrete-time simple exclusion process (SEP) on Z lattice with

a wedge initial condition.

An SEP is a process (ηt : t ≥ 0) taking value in {−1, 1}-sequence indexed by Z. A corner

growth model corresponding to an SEP considers the height function h : [0,∞) × Z → Z,

satisfying

h(0, 0) = 0;

h(t, x)− h(t, x− 1) = ηt(x).

SEP can be thought of as lattice sites Z occupied by particles, with ηt(x) = 1 (ηt(x) = −1)

indicates at time t site x is occupied (unoccupied) by a particle. At a time a particle can

jump to the left or right adjacent unoccupied site, or stay where it is. There are several types

of initial conditions of interest [Cor11]. One of them is called wedge, defined as h(0, x) = |x|
and η0(x) = Ix>0. As mentioned before this corresponds to the discrete directed last passage

percolation. In the our discrete-time model, if we take p = 1 and qj = q to be constant, then

each time particles independently jump to the left unoccupied site with probability 1− q and

stays on its site with probability q. It turns out in this case the fluctuation of the growth

model follows Tracy-Widom distribution, i.e. the distribution of the largest eigenvalue of the

GUE [Joh00].

In the continuous-time case, one class of SEP of interest is by making particles jump

exponentially with rate q to the left and p to the right unoccupied site, such that p+ q = 1.

Denote γ = q− p, then γ = 1, γ 6= 0 and γ = 0 corresponds to totally asymmetric (TASEP),

asymmetric (ASEP) and symmetric (SSEP) simple exclusion processes. Specifically, TASEP

can be achieved by making all the ξ’s distributed exponentially with parameter 1. In this

case, by an simple argument of scaling, the distribution of directed last passage percolation

of grid [n] × [k] with n ≥ k is the same of that of the largest eigenvalue of (n, k)-LUE

[Joh00]. For general parameters, [DW09] proves a generalised result in a process (indexed by

n) level. However, going back to parameter 1 case, when considering asymptotic fluctuation,

the distribution is again scaled into Tracy-Widom law [Joh00].
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In both of the above cases, the asymptotics of the distributions differ in two aspects

from the normal central limit theorem where the fluctuation is Gaussian. First, the standard

deviation is a third of the order of mean, rather than half, which reflects the nonlinear

relation between the statistics and the number. The second is that the attractor is not

Gaussian. Actually this kind of fluctuation happens in other models as well. For example,

in [BDJ99], it is proved that the l(σ) for σ ∈ SN be an uniformly picked permutation scaled

into GUE statistics with the same 1/3 exponential of standard variance. This kind of central

limit theorems is called KPZ (Kardar-Parisi-Zhang) universality, as opposed to Gaussian

universality in the usual cases. It gets its name from the KPZ equation, a stochastic PDE:

∂tH =
1

2
∂xxH +

1

2
(∂xH)2 + Ẇ ,

where Ẇ is a space-time white noise. This equation is ill posed since (∂xH)2 makes no sense.

However for a solution of well-posed stochastic heat equation (SHE)

∂tZ =
1

2
∂xxZ + ZẆ ,

by denoting H = logZ and putting H into the SHE, it turns out H formally satisfies the KPZ

equation. Such an H is called a Hopf-Cole solution. It is the scaling limit of height function

h of some SEP model. On the other hand, the solution Z to SHE with initial condition

Z(0, x) = δ(x) (corresponding to “narrow wedge” initial condition of KPZ equation) is L1

defined in Section 5.3, see [OW11].
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