--- date: '2019-03-15' title: List of Notations template: default --- Here I list meanings of notations that may have not been explained elsewhere. - $\text{ty}$: type. Given a word $w \in [n]^\ell$, $\text{ty} w = (m_1, m_2, ..., m_n)$ where $m_i$ is the number of $i$\'s in $w$. For example $\text{ty} (1, 2, 2, 1, 4, 2) = (2, 3, 0, 1)$. The definition of $\text{ty} T$ for a tableau $T$ is similar. - $[n]$: for $n \in \mathbb N_{>0}$, $[n]$ stands for the set $\{1, 2, ..., n\}$. - $i : j$: for $i, j \in \mathbb Z$, $i : j$ stands for the set $\{i, i + 1, ..., j\}$, or the sequence $(i, i + 1, ..., j)$, depending on the context. - $k = i : j$: means $k$ iterates over $i$, $i + 1$,\..., $j$. For example $\sum_{k = 1 : n} a_k := \sum_{k = 1}^n a_k$. - $x_{i : j}$: stands for the set $\{x_k: k = i : j\}$ or the sequence $(x_i, x_{i + 1}, ..., x_j)$, depending on the context. So are notations like $f(i : j)$, $y^{i : j}$ etc. - $\mathbb N$: the set of natural numbers / nonnegative integer numbers $\{0, 1, 2,...\}$, whereas - $\mathbb N_{>0}$ or $\mathbb N^+$: Are the set of positive integer numbers. - $x^w$: when both $x$ and $w$ are tuples of objects, this means $\prod_i x_{w_i}$. For example say $w = (1, 2, 2, 1, 4, 2)$, and $x = x_{1 : 7}$, then $x^w = x_1^2 x_2^3 x_4$. - $LHS$, LHS, $RHS$, RHS: left hand side and right hand side of a formula - $e_i$: the $i$th standard basis in a vector space: $e_i = (0, 0, ..., 0, 1, 0, 0, ...)$ where the sequence is finite or infinite depending on the dimension of the vector space and the $1$ is the $i$th entry and all other entries are $0$. - $1_{A}(x)$ where $A$ is a set: an indicator function, which evaluates to $1$ if $x \in A$, and $0$ otherwise. - $1_{p}$: an indicator function, which evaluates to $1$ if the predicate $p$ is true and $0$ otherwise. Example: $1_{x \in A}$, same as $1_A(x)$. - $\xi \sim p$: the random variable $xi$ is distributed according to the probability density function / probability mass function / probability measure $p$. - $\xi \overset{d}{=} \eta$: the random variables $\xi$ and $\eta$ have the same distribution. - $\mathbb E f(\xi)$: expectation of $f(\xi)$. - $\mathbb P(A)$: probability of event $A$. - $a \wedge b$: $\min\{a, b\}$. - $a \vee b$: $\max\{a, b\}$. - $(\alpha)_+$: the positive part of $\alpha$, i.e. $\alpha \vee 0$. - $(\alpha)_-$: the negative part of $\alpha$, i.e. $(- \alpha)_+$.