blob: 7438a912c276a03ef6c59d52921f380fdb7796d5 (
plain) (
tree)
|
|
{-# LANGUAGE DeriveDataTypeable #-}
-- |
-- Module : Data.Attoparsec.Number
-- Copyright : Bryan O'Sullivan 2007-2014
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : unknown
--
-- This module is deprecated, and both the module and 'Number' type
-- will be removed in the next major release. Use the
-- <http://hackage.haskell.org/package/scientific scientific> package
-- and the 'Data.Scientific.Scientific' type instead.
--
-- A simple number type, useful for parsing both exact and inexact
-- quantities without losing much precision.
module Data.Attoparsec.Number
{-# DEPRECATED "This module will be removed in the next major release." #-}
(
Number(..)
) where
import Control.DeepSeq (NFData(rnf))
import Data.Data (Data)
import Data.Function (on)
import Data.Typeable (Typeable)
-- | A numeric type that can represent integers accurately, and
-- floating point numbers to the precision of a 'Double'.
--
-- /Note/: this type is deprecated, and will be removed in the next
-- major release. Use the 'Data.Scientific.Scientific' type instead.
data Number = I !Integer
| D {-# UNPACK #-} !Double
deriving (Typeable, Data)
{-# DEPRECATED Number "Use Scientific instead." #-}
instance Show Number where
show (I a) = show a
show (D a) = show a
instance NFData Number where
rnf (I _) = ()
rnf (D _) = ()
{-# INLINE rnf #-}
binop :: (Integer -> Integer -> a) -> (Double -> Double -> a)
-> Number -> Number -> a
binop _ d (D a) (D b) = d a b
binop i _ (I a) (I b) = i a b
binop _ d (D a) (I b) = d a (fromIntegral b)
binop _ d (I a) (D b) = d (fromIntegral a) b
{-# INLINE binop #-}
instance Eq Number where
(==) = binop (==) (==)
{-# INLINE (==) #-}
(/=) = binop (/=) (/=)
{-# INLINE (/=) #-}
instance Ord Number where
(<) = binop (<) (<)
{-# INLINE (<) #-}
(<=) = binop (<=) (<=)
{-# INLINE (<=) #-}
(>) = binop (>) (>)
{-# INLINE (>) #-}
(>=) = binop (>=) (>=)
{-# INLINE (>=) #-}
compare = binop compare compare
{-# INLINE compare #-}
instance Num Number where
(+) = binop (((I$!).) . (+)) (((D$!).) . (+))
{-# INLINE (+) #-}
(-) = binop (((I$!).) . (-)) (((D$!).) . (-))
{-# INLINE (-) #-}
(*) = binop (((I$!).) . (*)) (((D$!).) . (*))
{-# INLINE (*) #-}
abs (I a) = I $! abs a
abs (D a) = D $! abs a
{-# INLINE abs #-}
negate (I a) = I $! negate a
negate (D a) = D $! negate a
{-# INLINE negate #-}
signum (I a) = I $! signum a
signum (D a) = D $! signum a
{-# INLINE signum #-}
fromInteger = (I$!) . fromInteger
{-# INLINE fromInteger #-}
instance Real Number where
toRational (I a) = fromIntegral a
toRational (D a) = toRational a
{-# INLINE toRational #-}
instance Fractional Number where
fromRational = (D$!) . fromRational
{-# INLINE fromRational #-}
(/) = binop (((D$!).) . (/) `on` fromIntegral)
(((D$!).) . (/))
{-# INLINE (/) #-}
recip (I a) = D $! recip (fromIntegral a)
recip (D a) = D $! recip a
{-# INLINE recip #-}
instance RealFrac Number where
properFraction (I a) = (fromIntegral a,0)
properFraction (D a) = case properFraction a of
(i,d) -> (i,D d)
{-# INLINE properFraction #-}
truncate (I a) = fromIntegral a
truncate (D a) = truncate a
{-# INLINE truncate #-}
round (I a) = fromIntegral a
round (D a) = round a
{-# INLINE round #-}
ceiling (I a) = fromIntegral a
ceiling (D a) = ceiling a
{-# INLINE ceiling #-}
floor (I a) = fromIntegral a
floor (D a) = floor a
{-# INLINE floor #-}
|