{-# OPTIONS -cpp #-}
--
-- (c) The University of Glasgow 2002
--
-- Binary I/O library, with special tweaks for GHC
--
-- Based on the nhc98 Binary library, which is copyright
-- (c) Malcolm Wallace and Colin Runciman, University of York, 1998.
-- Under the terms of the license for that software, we must tell you
-- where you can obtain the original version of the Binary library, namely
-- http://www.cs.york.ac.uk/fp/nhc98/
module Binary
( {-type-} Bin,
{-class-} Binary(..),
{-type-} BinHandle,
openBinIO,
openBinIO_,
openBinMem,
-- closeBin,
-- getUserData,
seekBin,
tellBin,
castBin,
writeBinMem,
readBinMem,
isEOFBin,
-- for writing instances:
putByte,
getByte,
putString,
getString,
-- lazy Bin I/O
lazyGet,
lazyPut,
-- GHC only:
ByteArray(..),
getByteArray,
putByteArray,
-- getBinFileWithDict, -- :: Binary a => FilePath -> IO a
-- putBinFileWithDict, -- :: Binary a => FilePath -> Module -> a -> IO ()
-- re-export for the benefit of other modules.
openBinaryFile,
FormatVersion,
nullFormatVersion,
mkFormatVersion,
) where
#include "MachDeps.h"
import FastMutInt
import Char
import Monad
#if __GLASGOW_HASKELL__ < 503
import IOExts
import Bits
import Int
import Word
import Char
import Monad
import Exception
import GlaExts hiding (ByteArray, newByteArray, freezeByteArray)
import Array
import IO
import PrelIOBase ( IOError(..), IOErrorType(..)
#if __GLASGOW_HASKELL__ > 411
, IOException(..)
#endif
)
import PrelReal ( Ratio(..) )
import PrelIOBase ( IO(..) )
#else
import Data.Array.IO
import Data.Array
import Data.Bits
import Data.Int
import Data.Word
import Data.IORef
import Data.Char ( ord, chr )
import Data.Array.Base ( unsafeRead, unsafeWrite )
import Control.Monad ( when )
import Control.Exception ( throwDyn )
import System.IO as IO
import System.IO.Unsafe ( unsafeInterleaveIO )
import System.IO.Error ( mkIOError, eofErrorType )
import GHC.Real ( Ratio(..) )
import GHC.Exts
import GHC.IOBase ( IO(..) )
import GHC.Word ( Word8(..) )
#if __GLASGOW_HASKELL__ < 601
-- openFileEx is available from the lang package, but we want to
-- be independent of hslibs libraries.
import GHC.Handle ( openFileEx, IOModeEx(..) )
#else
import System.IO ( openBinaryFile )
#endif
#endif
import IO
#if __GLASGOW_HASKELL__ < 601
openBinaryFile f mode = openFileEx f (BinaryMode mode)
#endif
#if __GLASGOW_HASKELL__ < 503
type BinArray = MutableByteArray RealWorld Int
newArray_ bounds = stToIO (newCharArray bounds)
unsafeWrite arr ix e = stToIO (writeWord8Array arr ix e)
unsafeRead arr ix = stToIO (readWord8Array arr ix)
#if __GLASGOW_HASKELL__ < 411
newByteArray# = newCharArray#
#endif
hPutArray h arr sz = hPutBufBAFull h arr sz
hGetArray h sz = hGetBufBAFull h sz
mkIOError :: IOErrorType -> String -> Maybe Handle -> Maybe FilePath -> Exception
mkIOError t location maybe_hdl maybe_filename
= IOException (IOError maybe_hdl t location ""
#if __GLASGOW_HASKELL__ > 411
maybe_filename
#endif
)
eofErrorType = EOF
#ifndef SIZEOF_HSINT
#define SIZEOF_HSINT INT_SIZE_IN_BYTES
#endif
#ifndef SIZEOF_HSWORD
#define SIZEOF_HSWORD WORD_SIZE_IN_BYTES
#endif
#else
type BinArray = IOUArray Int Word8
#endif
data BinHandle
= BinMem { -- binary data stored in an unboxed array
state :: Int, -- sigh, need parameterized modules :-)
off_r :: !FastMutInt, -- the current offset
sz_r :: !FastMutInt, -- size of the array (cached)
arr_r :: !(IORef BinArray) -- the array (bounds: (0,size-1))
}
-- XXX: should really store a "high water mark" for dumping out
-- the binary data to a file.
| BinIO { -- binary data stored in a file
state :: Int,
off_r :: !FastMutInt, -- the current offset (cached)
hdl :: !IO.Handle -- the file handle (must be seekable)
}
-- cache the file ptr in BinIO; using hTell is too expensive
-- to call repeatedly. If anyone else is modifying this Handle
-- at the same time, we'll be screwed.
newtype Bin a = BinPtr Int
deriving (Eq, Ord, Show, Bounded)
castBin :: Bin a -> Bin b
castBin (BinPtr i) = BinPtr i
class Binary a where
put_ :: BinHandle -> a -> IO ()
put :: BinHandle -> a -> IO (Bin a)
get :: BinHandle -> IO a
-- define one of put_, put. Use of put_ is recommended because it
-- is more likely that tail-calls can kick in, and we rarely need the
-- position return value.
put_ bh a = do put bh a; return ()
put bh a = do p <- tellBin bh; put_ bh a; return p
putAt :: Binary a => BinHandle -> Bin a -> a -> IO ()
putAt bh p x = do seekBin bh p; put bh x; return ()
getAt :: Binary a => BinHandle -> Bin a -> IO a
getAt bh p = do seekBin bh p; get bh
openBinIO_ :: IO.Handle -> IO BinHandle
openBinIO_ h = openBinIO h
openBinIO :: IO.Handle -> IO BinHandle
openBinIO h = do
r <- newFastMutInt
writeFastMutInt r 0
return (BinIO undefined r h)
openBinMem :: Int -> IO BinHandle
openBinMem size
| size <= 0 = error "Data.Binary.openBinMem: size must be >= 0"
| otherwise = do
arr <- newArray_ (0,size-1)
arr_r0 <- newIORef arr
ix_r <- newFastMutInt
writeFastMutInt ix_r 0
sz_r0 <- newFastMutInt
writeFastMutInt sz_r0 size
return (BinMem undefined ix_r sz_r0 arr_r0)
--noBinHandleUserData :: a
--noBinHandleUserData = error "Binary.BinHandle: no user data"
--getUserData :: BinHandle -> BinHandleState
--getUserData bh = state bh
tellBin :: BinHandle -> IO (Bin a)
tellBin (BinIO _ r _) = do ix <- readFastMutInt r; return (BinPtr ix)
tellBin (BinMem _ r _ _) = do ix <- readFastMutInt r; return (BinPtr ix)
seekBin :: BinHandle -> Bin a -> IO ()
seekBin (BinIO _ ix_r h) (BinPtr p) = do
writeFastMutInt ix_r p
hSeek h AbsoluteSeek (fromIntegral p)
seekBin h@(BinMem _ ix_r sz_r0 _) (BinPtr p) = do
sz <- readFastMutInt sz_r0
if (p >= sz)
then do expandBin h p; writeFastMutInt ix_r p
else writeFastMutInt ix_r p
isEOFBin :: BinHandle -> IO Bool
isEOFBin (BinMem _ ix_r sz_r0 _) = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r0
return (ix >= sz)
isEOFBin (BinIO _ _ h) = hIsEOF h
writeBinMem :: BinHandle -> FilePath -> IO ()
writeBinMem (BinIO _ _ _) _ = error "Data.Binary.writeBinMem: not a memory handle"
writeBinMem (BinMem _ ix_r _ arr_r0) fn = do
h <- openBinaryFile fn WriteMode
arr <- readIORef arr_r0
ix <- readFastMutInt ix_r
hPutArray h arr ix
hClose h
readBinMem :: FilePath -> IO BinHandle
readBinMem filename = do
h <- openBinaryFile filename ReadMode
filesize' <- hFileSize h
let filesize = fromIntegral filesize'
arr <- newArray_ (0,filesize-1)
count <- hGetArray h arr filesize
when (count /= filesize)
(error ("Binary.readBinMem: only read " ++ show count ++ " bytes"))
hClose h
arr_r0 <- newIORef arr
ix_r <- newFastMutInt
writeFastMutInt ix_r 0
sz_r0 <- newFastMutInt
writeFastMutInt sz_r0 filesize
return (BinMem undefined {-initReadState-} ix_r sz_r0 arr_r0)
-- expand the size of the array to include a specified offset
expandBin :: BinHandle -> Int -> IO ()
expandBin (BinMem _ _ sz_r0 arr_r0) off = do
sz <- readFastMutInt sz_r0
let sz' = head (dropWhile (<= off) (iterate (* 2) sz))
arr <- readIORef arr_r0
arr' <- newArray_ (0,sz'-1)
sequence_ [ unsafeRead arr i >>= unsafeWrite arr' i
| i <- [ 0 .. sz-1 ] ]
writeFastMutInt sz_r0 sz'
writeIORef arr_r0 arr'
hPutStrLn stderr ("expanding to size: " ++ show sz')
return ()
expandBin (BinIO _ _ _) _ = return ()
-- no need to expand a file, we'll assume they expand by themselves.
-- -----------------------------------------------------------------------------
-- Low-level reading/writing of bytes
putWord8 :: BinHandle -> Word8 -> IO ()
putWord8 h@(BinMem _ ix_r sz_r0 arr_r0) w = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r0
-- double the size of the array if it overflows
if (ix >= sz)
then do expandBin h ix
putWord8 h w
else do arr <- readIORef arr_r0
unsafeWrite arr ix w
writeFastMutInt ix_r (ix+1)
return ()
putWord8 (BinIO _ ix_r h) w = do
ix <- readFastMutInt ix_r
hPutChar h (chr (fromIntegral w)) -- XXX not really correct
writeFastMutInt ix_r (ix+1)
return ()
getWord8 :: BinHandle -> IO Word8
getWord8 (BinMem _ ix_r sz_r0 arr_r0) = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r0
when (ix >= sz) $
ioError (mkIOError eofErrorType "Data.Binary.getWord8" Nothing Nothing)
arr <- readIORef arr_r0
w <- unsafeRead arr ix
writeFastMutInt ix_r (ix+1)
return w
getWord8 (BinIO _ ix_r h) = do
ix <- readFastMutInt ix_r
c <- hGetChar h
writeFastMutInt ix_r (ix+1)
return $! (fromIntegral (ord c)) -- XXX not really correct
-- | Get the next byte, but don't change the pointer.
peekWord8 :: BinHandle -> IO Word8
peekWord8 (BinMem _ ix_r sz_r0 arr_r0) = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r0
when (ix >= sz) $
ioError (mkIOError eofErrorType "Data.Binary.getWord8" Nothing Nothing)
arr <- readIORef arr_r0
w <- unsafeRead arr ix
return w
peekWord8 (BinIO _ ix_r h) = do
c <- hLookAhead h
return $! (fromIntegral (ord c)) -- XXX not really correct
putByte :: BinHandle -> Word8 -> IO ()
putByte bh w = put_ bh w
getByte :: BinHandle -> IO Word8
getByte = getWord8
-- -----------------------------------------------------------------------------
-- Primitve Word writes
instance Binary Word8 where
put_ = putWord8
get = getWord8
instance Binary Word16 where
put_ h w = do -- XXX too slow.. inline putWord8?
putByte h (fromIntegral (w `shiftR` 8))
putByte h (fromIntegral (w .&. 0xff))
get h = do
w1 <- getWord8 h
w2 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 8) .|. fromIntegral w2)
instance Binary Word32 where
put_ h w = do
putByte h (fromIntegral (w `shiftR` 24))
putByte h (fromIntegral ((w `shiftR` 16) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 8) .&. 0xff))
putByte h (fromIntegral (w .&. 0xff))
get h = do
w1 <- getWord8 h
w2 <- getWord8 h
w3 <- getWord8 h
w4 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 24) .|.
(fromIntegral w2 `shiftL` 16) .|.
(fromIntegral w3 `shiftL` 8) .|.
(fromIntegral w4))
instance Binary Word64 where
put_ h w = do
putByte h (fromIntegral (w `shiftR` 56))
putByte h (fromIntegral ((w `shiftR` 48) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 40) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 32) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 24) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 16) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 8) .&. 0xff))
putByte h (fromIntegral (w .&. 0xff))
get h = do
w1 <- getWord8 h
w2 <- getWord8 h
w3 <- getWord8 h
w4 <- getWord8 h
w5 <- getWord8 h
w6 <- getWord8 h
w7 <- getWord8 h
w8 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 56) .|.
(fromIntegral w2 `shiftL` 48) .|.
(fromIntegral w3 `shiftL` 40) .|.
(fromIntegral w4 `shiftL` 32) .|.
(fromIntegral w5 `shiftL` 24) .|.
(fromIntegral w6 `shiftL` 16) .|.
(fromIntegral w7 `shiftL` 8) .|.
(fromIntegral w8))
-- -----------------------------------------------------------------------------
-- Primitve Int writes
instance Binary Int8 where
put_ h w = put_ h (fromIntegral w :: Word8)
get h = do w <- get h; return $! (fromIntegral (w::Word8))
instance Binary Int16 where
put_ h w = put_ h (fromIntegral w :: Word16)
get h = do w <- get h; return $! (fromIntegral (w::Word16))
instance Binary Int32 where
put_ h w = put_ h (fromIntegral w :: Word32)
get h = do w <- get h; return $! (fromIntegral (w::Word32))
instance Binary Int64 where
put_ h w = put_ h (fromIntegral w :: Word64)
get h = do w <- get h; return $! (fromIntegral (w::Word64))
-- -----------------------------------------------------------------------------
-- Instances for standard types
instance Binary () where
put_ _ () = return ()
get _ = return ()
-- getF bh p = case getBitsF bh 0 p of (_,b) -> ((),b)
instance Binary Bool where
put_ bh b = putByte bh (fromIntegral (fromEnum b))
get bh = do x <- getWord8 bh; return $! (toEnum (fromIntegral x))
-- getF bh p = case getBitsF bh 1 p of (x,b) -> (toEnum x,b)
instance Binary Char where
put_ bh c = put_ bh (fromIntegral (ord c) :: Word32)
get bh = do x <- get bh; return $! (chr (fromIntegral (x :: Word32)))
-- getF bh p = case getBitsF bh 8 p of (x,b) -> (toEnum x,b)
instance Binary Int where
#if SIZEOF_HSINT == 4
put_ bh i = put_ bh (fromIntegral i :: Int32)
get bh = do
x <- get bh
return $! (fromIntegral (x :: Int32))
#elif SIZEOF_HSINT == 8
put_ bh i = put_ bh (fromIntegral i :: Int64)
get bh = do
x <- get bh
return $! (fromIntegral (x :: Int64))
#else
#error "unsupported sizeof(HsInt)"
#endif
-- getF bh = getBitsF bh 32
{-
instance Binary a => Binary [a] where
put_ bh [] = putByte bh 0
put_ bh (x:xs) = do putByte bh 1; put_ bh x; put_ bh xs
get bh = do h <- getWord8 bh
case h of
0 -> return []
_ -> do x <- get bh
xs <- get bh
return (x:xs)
-}
instance Binary a => Binary [a] where
put_ bh l =
do put_ bh (length l)
mapM (put_ bh) l
return ()
get bh =
do len <- get bh
mapM (\_ -> get bh) [1..(len::Int)]
instance (Binary a, Binary b) => Binary (a,b) where
put_ bh (a,b) = do put_ bh a; put_ bh b
get bh = do a <- get bh
b <- get bh
return (a,b)
instance (Binary a, Binary b, Binary c) => Binary (a,b,c) where
put_ bh (a,b,c) = do put_ bh a; put_ bh b; put_ bh c
get bh = do a <- get bh
b <- get bh
c <- get bh
return (a,b,c)
instance (Binary a, Binary b, Binary c, Binary d) => Binary (a,b,c,d) where
put_ bh (a,b,c,d) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
return (a,b,c,d)
instance (Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a,b,c,d,e) where
put_ bh (a,b,c,d,e) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
return (a,b,c,d,e)
instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a,b,c,d,e,f) where
put_ bh (a,b,c,d,e,f) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
f <- get bh
return (a,b,c,d,e,f)
instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f,Binary g) => Binary (a,b,c,d,e,f,g) where
put_ bh (a,b,c,d,e,f,g) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f; put_ bh g
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
f <- get bh
g <- get bh
return (a,b,c,d,e,f,g)
instance Binary a => Binary (Maybe a) where
put_ bh Nothing = putByte bh 0
put_ bh (Just a) = do putByte bh 1; put_ bh a
get bh = do h <- getWord8 bh
case h of
0 -> return Nothing
_ -> do x <- get bh; return (Just x)
instance (Binary a, Binary b) => Binary (Either a b) where
put_ bh (Left a) = do putByte bh 0; put_ bh a
put_ bh (Right b) = do putByte bh 1; put_ bh b
get bh = do h <- getWord8 bh
case h of
0 -> do a <- get bh ; return (Left a)
_ -> do b <- get bh ; return (Right b)
instance Binary Integer where
put_ bh (S# i#) = do putByte bh 0; put_ bh (I# i#)
put_ bh (J# s# a#) = do
p <- putByte bh 1;
put_ bh (I# s#)
let sz# = sizeofByteArray# a# -- in *bytes*
put_ bh (I# sz#) -- in *bytes*
putByteArray bh a# sz#
get bh = do
b <- getByte bh
case b of
0 -> do (I# i#) <- get bh
return (S# i#)
_ -> do (I# s#) <- get bh
sz <- get bh
(BA a#) <- getByteArray bh sz
return (J# s# a#)
putByteArray :: BinHandle -> ByteArray# -> Int# -> IO ()
putByteArray bh a s# = loop 0#
where loop n#
| n# ==# s# = return ()
| otherwise = do
putByte bh (indexByteArray a n#)
loop (n# +# 1#)
getByteArray :: BinHandle -> Int -> IO ByteArray
getByteArray bh (I# sz) = do
(MBA arr) <- newByteArray sz
let loop n
| n ==# sz = return ()
| otherwise = do
w <- getByte bh
writeByteArray arr n w
loop (n +# 1#)
loop 0#
freezeByteArray arr
data ByteArray = BA ByteArray#
data MBA = MBA (MutableByteArray# RealWorld)
newByteArray :: Int# -> IO MBA
newByteArray sz = IO $ \s0 ->
case newByteArray# sz s0 of { (# s, arr #) ->
(# s, MBA arr #) }
freezeByteArray :: MutableByteArray# RealWorld -> IO ByteArray
freezeByteArray arr0 = IO $ \s0 ->
case unsafeFreezeByteArray# arr0 s0 of { (# s, arr #) ->
(# s, BA arr #) }
writeByteArray :: MutableByteArray# RealWorld -> Int# -> Word8 -> IO ()
writeByteArray arr i w8 = IO $ \s0 ->
case fromIntegral w8 of { W# w# ->
case writeCharArray# arr i (chr# (word2Int# w#)) s0 of { s ->
(# s , () #) }}
indexByteArray :: ByteArray# -> Int# -> Word8
indexByteArray a# n# = fromIntegral (I# (ord# (indexCharArray# a# n#)))
instance (Integral a, Binary a) => Binary (Ratio a) where
put_ bh (a :% b) = do put_ bh a; put_ bh b
get bh = do a <- get bh; b <- get bh; return (a :% b)
instance Binary (Bin a) where
put_ bh (BinPtr i) = put_ bh i
get bh = do i <- get bh; return (BinPtr i)
-- -----------------------------------------------------------------------------
-- Strings
-- should put a string in UTF-8 (just throws away top 24 bits at the moment)
putString :: BinHandle -> String -> IO ()
putString bh str = put_ bh word8s
where
word8s :: [Word8]
word8s = map (fromIntegral.ord) str
getString :: BinHandle -> IO String
getString bh = do
word8s <- get bh
return (map (chr.fromIntegral) (word8s :: [Word8]))
-- -----------------------------------------------------------------------------
-- Lazy reading/writing
lazyPut :: Binary a => BinHandle -> a -> IO ()
lazyPut bh a = do
-- output the obj with a ptr to skip over it:
pre_a <- tellBin bh
put_ bh pre_a -- save a slot for the ptr
put_ bh a -- dump the object
q <- tellBin bh -- q = ptr to after object
putAt bh pre_a q -- fill in slot before a with ptr to q
seekBin bh q -- finally carry on writing at q
lazyGet :: Binary a => BinHandle -> IO a
lazyGet bh = do
p <- get bh -- a BinPtr
p_a <- tellBin bh
a <- unsafeInterleaveIO (getAt bh p_a)
seekBin bh p -- skip over the object for now
return a
-- -----------------------------------------------------------------------------
-- FormatVersion's.
-- The FormatVersion is always non-negative. Furthermore, if the
-- FormatVersion is 0, nothing is output.
--
-- FormatVersion should only be encoded before something we KNOW to have
-- an encoding which never begins with a negative byte, such as a non-negative
-- integer or a list.
--
-- The advantage of this is that we can read a FormatVersion (which will
-- be the nullFormatVersion) even when we didn't write one in the first
-- place, such as from earlier versions of this program, just so long
-- as we did at any rate write a list.
newtype FormatVersion = FormatVersion Int deriving (Eq,Ord)
nullFormatVersion :: FormatVersion
nullFormatVersion = mkFormatVersion 0
mkFormatVersion :: Int -> FormatVersion
mkFormatVersion i = FormatVersion i
instance Binary FormatVersion where
put_ bh (FormatVersion i) =
case compare i 0 of
EQ -> return ()
GT -> put_ bh (-i)
LT -> error (
"Binary.hs: negative FormatVersion " ++ show i
++ " is not allowed")
get bh =
do
w8 <- peekWord8 bh
if testBit w8 7
then
do
i <- get bh
return (FormatVersion (-i))
else
return nullFormatVersion