diff options
author | davve <davve@dtek.chalmers.se> | 2006-07-10 19:09:23 +0000 |
---|---|---|
committer | davve <davve@dtek.chalmers.se> | 2006-07-10 19:09:23 +0000 |
commit | 912edf6502ca514eb60e7210addb0f55a43a1c3d (patch) | |
tree | fc3c6f1101ed8cfa2f9410bf076b0b65887c1105 /src/Digraph.lhs | |
parent | b79272f54d67bfecc2cfeed0d1b8171c790f63c6 (diff) |
Initial modifications -- doesn't compile
Diffstat (limited to 'src/Digraph.lhs')
-rw-r--r-- | src/Digraph.lhs | 416 |
1 files changed, 0 insertions, 416 deletions
diff --git a/src/Digraph.lhs b/src/Digraph.lhs deleted file mode 100644 index a7a04d49..00000000 --- a/src/Digraph.lhs +++ /dev/null @@ -1,416 +0,0 @@ --- --- Taken from ghc/compiler/utils/Digraph.lhs v1.15 --- (c) The University of Glasgow, 2002 --- - -\begin{code} -{-# OPTIONS -cpp #-} -module Digraph( - - -- At present the only one with a "nice" external interface - stronglyConnComp, stronglyConnCompR, SCC(..), flattenSCC, flattenSCCs, - - Graph, Vertex, - graphFromEdges, buildG, transposeG, reverseE, outdegree, indegree, - - Tree(..), Forest, - showTree, showForest, - - dfs, dff, - topSort, - components, - scc, - back, cross, forward, - reachable, path, - bcc - - ) where - ------------------------------------------------------------------------------- --- A version of the graph algorithms described in: --- --- ``Lazy Depth-First Search and Linear Graph Algorithms in Haskell'' --- by David King and John Launchbury --- --- Also included is some additional code for printing tree structures ... ------------------------------------------------------------------------------- - - -#define ARR_ELT (COMMA) - --- Extensions -#if __GLASGOW_HASKELL__ < 503 -import ST -#else -import Control.Monad.ST -import Data.Array.ST hiding (indices,bounds) -#endif - --- std interfaces -import Maybe -import Array -import List -\end{code} - - -%************************************************************************ -%* * -%* External interface -%* * -%************************************************************************ - -\begin{code} -data SCC vertex = AcyclicSCC vertex - | CyclicSCC [vertex] - -flattenSCCs :: [SCC a] -> [a] -flattenSCCs = concatMap flattenSCC - -flattenSCC :: SCC vertex -> [vertex] -flattenSCC (AcyclicSCC v) = [v] -flattenSCC (CyclicSCC vs) = vs -\end{code} - -\begin{code} -stronglyConnComp - :: Ord key - => [(node, key, [key])] -- The graph; its ok for the - -- out-list to contain keys which arent - -- a vertex key, they are ignored - -> [SCC node] - -stronglyConnComp edges0 - = map get_node (stronglyConnCompR edges0) - where - get_node (AcyclicSCC (n, _, _)) = AcyclicSCC n - get_node (CyclicSCC triples) = CyclicSCC [n | (n,_,_) <- triples] - --- The "R" interface is used when you expect to apply SCC to --- the (some of) the result of SCC, so you dont want to lose the dependency info -stronglyConnCompR - :: Ord key - => [(node, key, [key])] -- The graph; its ok for the - -- out-list to contain keys which arent - -- a vertex key, they are ignored - -> [SCC (node, key, [key])] - -stronglyConnCompR [] = [] -- added to avoid creating empty array in graphFromEdges -- SOF -stronglyConnCompR edges0 - = map decode forest - where - (graph, vertex_fn) = graphFromEdges edges0 - forest = scc graph - decode (Node v []) | mentions_itself v = CyclicSCC [vertex_fn v] - | otherwise = AcyclicSCC (vertex_fn v) - decode other = CyclicSCC (dec other []) - where - dec (Node v ts) vs = vertex_fn v : foldr dec vs ts - mentions_itself v = v `elem` (graph ! v) -\end{code} - -%************************************************************************ -%* * -%* Graphs -%* * -%************************************************************************ - - -\begin{code} -type Vertex = Int -type Table a = Array Vertex a -type Graph = Table [Vertex] -type Bounds = (Vertex, Vertex) -type Edge = (Vertex, Vertex) -\end{code} - -\begin{code} -vertices :: Graph -> [Vertex] -vertices = indices - -edges :: Graph -> [Edge] -edges g = [ (v, w) | v <- vertices g, w <- g!v ] - -mapT :: (Vertex -> a -> b) -> Table a -> Table b -mapT f t = array (bounds t) [ (,) v (f v (t!v)) | v <- indices t ] - -buildG :: Bounds -> [Edge] -> Graph -buildG bounds0 edges0 = accumArray (flip (:)) [] bounds0 edges0 - -transposeG :: Graph -> Graph -transposeG g = buildG (bounds g) (reverseE g) - -reverseE :: Graph -> [Edge] -reverseE g = [ (w, v) | (v, w) <- edges g ] - -outdegree :: Graph -> Table Int -outdegree = mapT numEdges - where numEdges _ ws = length ws - -indegree :: Graph -> Table Int -indegree = outdegree . transposeG -\end{code} - - -\begin{code} -graphFromEdges - :: Ord key - => [(node, key, [key])] - -> (Graph, Vertex -> (node, key, [key])) -graphFromEdges edges0 - = (graph, \v -> vertex_map ! v) - where - max_v = length edges0 - 1 - bounds0 = (0,max_v) :: (Vertex, Vertex) - sorted_edges = sortBy lt edges0 - edges1 = zipWith (,) [0..] sorted_edges - - graph = array bounds0 [(,) v (mapMaybe key_vertex ks) | (,) v (_, _, ks) <- edges1] - key_map = array bounds0 [(,) v k | (,) v (_, k, _ ) <- edges1] - vertex_map = array bounds0 edges1 - - (_,k1,_) `lt` (_,k2,_) = k1 `compare` k2 - - -- key_vertex :: key -> Maybe Vertex - -- returns Nothing for non-interesting vertices - key_vertex k = findVertex 0 max_v - where - findVertex a b | a > b - = Nothing - findVertex a b = case compare k (key_map ! mid) of - LT -> findVertex a (mid-1) - EQ -> Just mid - GT -> findVertex (mid+1) b - where - mid = (a + b) `div` 2 -\end{code} - -%************************************************************************ -%* * -%* Trees and forests -%* * -%************************************************************************ - -\begin{code} -data Tree a = Node a (Forest a) -type Forest a = [Tree a] - -mapTree :: (a -> b) -> (Tree a -> Tree b) -mapTree f (Node x ts) = Node (f x) (map (mapTree f) ts) -\end{code} - -\begin{code} -instance Show a => Show (Tree a) where - showsPrec _ t s = showTree t ++ s - -showTree :: Show a => Tree a -> String -showTree = drawTree . mapTree show - -showForest :: Show a => Forest a -> String -showForest = unlines . map showTree - -drawTree :: Tree String -> String -drawTree = unlines . draw - -draw :: Tree String -> [String] -draw (Node x ts0) = grp this (space (length this)) (stLoop ts0) - where this = s1 ++ x ++ " " - - space n = replicate n ' ' - - stLoop [] = [""] - stLoop [t] = grp s2 " " (draw t) - stLoop (t:ts) = grp s3 s4 (draw t) ++ [s4] ++ rsLoop ts - - rsLoop [] = error "rsLoop:Unexpected empty list." - rsLoop [t] = grp s5 " " (draw t) - rsLoop (t:ts) = grp s6 s4 (draw t) ++ [s4] ++ rsLoop ts - - grp fst0 rst = zipWith (++) (fst0:repeat rst) - - [s1,s2,s3,s4,s5,s6] = ["- ", "--", "-+", " |", " `", " +"] -\end{code} - - -%************************************************************************ -%* * -%* Depth first search -%* * -%************************************************************************ - -\begin{code} -#if __GLASGOW_HASKELL__ >= 504 -newSTArray :: Ix i => (i,i) -> e -> ST s (STArray s i e) -newSTArray = newArray - -readSTArray :: Ix i => STArray s i e -> i -> ST s e -readSTArray = readArray - -writeSTArray :: Ix i => STArray s i e -> i -> e -> ST s () -writeSTArray = writeArray -#endif - -type Set s = STArray s Vertex Bool - -mkEmpty :: Bounds -> ST s (Set s) -mkEmpty bnds = newSTArray bnds False - -contains :: Set s -> Vertex -> ST s Bool -contains m v = readSTArray m v - -include :: Set s -> Vertex -> ST s () -include m v = writeSTArray m v True -\end{code} - -\begin{code} -dff :: Graph -> Forest Vertex -dff g = dfs g (vertices g) - -dfs :: Graph -> [Vertex] -> Forest Vertex -dfs g vs = prune (bounds g) (map (generate g) vs) - -generate :: Graph -> Vertex -> Tree Vertex -generate g v = Node v (map (generate g) (g!v)) - -prune :: Bounds -> Forest Vertex -> Forest Vertex -prune bnds ts = runST (mkEmpty bnds >>= \m -> - chop m ts) - -chop :: Set s -> Forest Vertex -> ST s (Forest Vertex) -chop _ [] = return [] -chop m (Node v ts : us) - = contains m v >>= \visited -> - if visited then - chop m us - else - include m v >>= \_ -> - chop m ts >>= \as -> - chop m us >>= \bs -> - return (Node v as : bs) -\end{code} - - -%************************************************************************ -%* * -%* Algorithms -%* * -%************************************************************************ - ------------------------------------------------------------- --- Algorithm 1: depth first search numbering ------------------------------------------------------------- - -\begin{code} -preorder :: Tree a -> [a] -preorder (Node a ts) = a : preorderF ts - -preorderF :: Forest a -> [a] -preorderF ts = concat (map preorder ts) - -tabulate :: Bounds -> [Vertex] -> Table Int -tabulate bnds vs = array bnds (zipWith (,) vs [1..]) - -preArr :: Bounds -> Forest Vertex -> Table Int -preArr bnds = tabulate bnds . preorderF -\end{code} - - ------------------------------------------------------------- --- Algorithm 2: topological sorting ------------------------------------------------------------- - -\begin{code} -postorder :: Tree a -> [a] -postorder (Node a ts) = postorderF ts ++ [a] - -postorderF :: Forest a -> [a] -postorderF ts = concat (map postorder ts) - -postOrd :: Graph -> [Vertex] -postOrd = postorderF . dff - -topSort :: Graph -> [Vertex] -topSort = reverse . postOrd -\end{code} - - ------------------------------------------------------------- --- Algorithm 3: connected components ------------------------------------------------------------- - -\begin{code} -components :: Graph -> Forest Vertex -components = dff . undirected - -undirected :: Graph -> Graph -undirected g = buildG (bounds g) (edges g ++ reverseE g) -\end{code} - - --- Algorithm 4: strongly connected components - -\begin{code} -scc :: Graph -> Forest Vertex -scc g = dfs g (reverse (postOrd (transposeG g))) -\end{code} - - ------------------------------------------------------------- --- Algorithm 5: Classifying edges ------------------------------------------------------------- - -\begin{code} -back :: Graph -> Table Int -> Graph -back g post = mapT select g - where select v ws = [ w | w <- ws, post!v < post!w ] - -cross :: Graph -> Table Int -> Table Int -> Graph -cross g pre post = mapT select g - where select v ws = [ w | w <- ws, post!v > post!w, pre!v > pre!w ] - -forward :: Graph -> Graph -> Table Int -> Graph -forward g tree pre = mapT select g - where select v ws = [ w | w <- ws, pre!v < pre!w ] \\ tree!v -\end{code} - - ------------------------------------------------------------- --- Algorithm 6: Finding reachable vertices ------------------------------------------------------------- - -\begin{code} -reachable :: Graph -> Vertex -> [Vertex] -reachable g v = preorderF (dfs g [v]) - -path :: Graph -> Vertex -> Vertex -> Bool -path g v w = w `elem` (reachable g v) -\end{code} - - ------------------------------------------------------------- --- Algorithm 7: Biconnected components ------------------------------------------------------------- - -\begin{code} -bcc :: Graph -> Forest [Vertex] -bcc g = (concat . map bicomps . map (do_label g dnum)) forest - where forest = dff g - dnum = preArr (bounds g) forest - -do_label :: Graph -> Table Int -> Tree Vertex -> Tree (Vertex,Int,Int) -do_label g dnum (Node v ts) = Node (v,dnum!v,lv) us - where us = map (do_label g dnum) ts - lv = minimum ([dnum!v] ++ [dnum!w | w <- g!v] - ++ [lu | Node (u,du,lu) xs <- us]) - -bicomps :: Tree (Vertex,Int,Int) -> Forest [Vertex] -bicomps (Node (v,_,_) ts) - = [ Node (v:vs) us | (l,Node vs us) <- map collect ts] - -collect :: Tree (Vertex,Int,Int) -> (Int, Tree [Vertex]) -collect (Node (v,dv,lv) ts) = (lv, Node (v:vs) cs) - where collected = map collect ts - vs = concat [ ws | (lw, Node ws us) <- collected, lw<dv] - cs = concat [ if lw<dv then us else [Node (v:ws) us] - | (lw, Node ws us) <- collected ] -\end{code} - |