aboutsummaryrefslogtreecommitdiff
path: root/src/Digraph.lhs
diff options
context:
space:
mode:
authordavve <davve@dtek.chalmers.se>2006-07-10 19:09:23 +0000
committerdavve <davve@dtek.chalmers.se>2006-07-10 19:09:23 +0000
commit912edf6502ca514eb60e7210addb0f55a43a1c3d (patch)
treefc3c6f1101ed8cfa2f9410bf076b0b65887c1105 /src/Digraph.lhs
parentb79272f54d67bfecc2cfeed0d1b8171c790f63c6 (diff)
Initial modifications -- doesn't compile
Diffstat (limited to 'src/Digraph.lhs')
-rw-r--r--src/Digraph.lhs416
1 files changed, 0 insertions, 416 deletions
diff --git a/src/Digraph.lhs b/src/Digraph.lhs
deleted file mode 100644
index a7a04d49..00000000
--- a/src/Digraph.lhs
+++ /dev/null
@@ -1,416 +0,0 @@
---
--- Taken from ghc/compiler/utils/Digraph.lhs v1.15
--- (c) The University of Glasgow, 2002
---
-
-\begin{code}
-{-# OPTIONS -cpp #-}
-module Digraph(
-
- -- At present the only one with a "nice" external interface
- stronglyConnComp, stronglyConnCompR, SCC(..), flattenSCC, flattenSCCs,
-
- Graph, Vertex,
- graphFromEdges, buildG, transposeG, reverseE, outdegree, indegree,
-
- Tree(..), Forest,
- showTree, showForest,
-
- dfs, dff,
- topSort,
- components,
- scc,
- back, cross, forward,
- reachable, path,
- bcc
-
- ) where
-
-------------------------------------------------------------------------------
--- A version of the graph algorithms described in:
---
--- ``Lazy Depth-First Search and Linear Graph Algorithms in Haskell''
--- by David King and John Launchbury
---
--- Also included is some additional code for printing tree structures ...
-------------------------------------------------------------------------------
-
-
-#define ARR_ELT (COMMA)
-
--- Extensions
-#if __GLASGOW_HASKELL__ < 503
-import ST
-#else
-import Control.Monad.ST
-import Data.Array.ST hiding (indices,bounds)
-#endif
-
--- std interfaces
-import Maybe
-import Array
-import List
-\end{code}
-
-
-%************************************************************************
-%* *
-%* External interface
-%* *
-%************************************************************************
-
-\begin{code}
-data SCC vertex = AcyclicSCC vertex
- | CyclicSCC [vertex]
-
-flattenSCCs :: [SCC a] -> [a]
-flattenSCCs = concatMap flattenSCC
-
-flattenSCC :: SCC vertex -> [vertex]
-flattenSCC (AcyclicSCC v) = [v]
-flattenSCC (CyclicSCC vs) = vs
-\end{code}
-
-\begin{code}
-stronglyConnComp
- :: Ord key
- => [(node, key, [key])] -- The graph; its ok for the
- -- out-list to contain keys which arent
- -- a vertex key, they are ignored
- -> [SCC node]
-
-stronglyConnComp edges0
- = map get_node (stronglyConnCompR edges0)
- where
- get_node (AcyclicSCC (n, _, _)) = AcyclicSCC n
- get_node (CyclicSCC triples) = CyclicSCC [n | (n,_,_) <- triples]
-
--- The "R" interface is used when you expect to apply SCC to
--- the (some of) the result of SCC, so you dont want to lose the dependency info
-stronglyConnCompR
- :: Ord key
- => [(node, key, [key])] -- The graph; its ok for the
- -- out-list to contain keys which arent
- -- a vertex key, they are ignored
- -> [SCC (node, key, [key])]
-
-stronglyConnCompR [] = [] -- added to avoid creating empty array in graphFromEdges -- SOF
-stronglyConnCompR edges0
- = map decode forest
- where
- (graph, vertex_fn) = graphFromEdges edges0
- forest = scc graph
- decode (Node v []) | mentions_itself v = CyclicSCC [vertex_fn v]
- | otherwise = AcyclicSCC (vertex_fn v)
- decode other = CyclicSCC (dec other [])
- where
- dec (Node v ts) vs = vertex_fn v : foldr dec vs ts
- mentions_itself v = v `elem` (graph ! v)
-\end{code}
-
-%************************************************************************
-%* *
-%* Graphs
-%* *
-%************************************************************************
-
-
-\begin{code}
-type Vertex = Int
-type Table a = Array Vertex a
-type Graph = Table [Vertex]
-type Bounds = (Vertex, Vertex)
-type Edge = (Vertex, Vertex)
-\end{code}
-
-\begin{code}
-vertices :: Graph -> [Vertex]
-vertices = indices
-
-edges :: Graph -> [Edge]
-edges g = [ (v, w) | v <- vertices g, w <- g!v ]
-
-mapT :: (Vertex -> a -> b) -> Table a -> Table b
-mapT f t = array (bounds t) [ (,) v (f v (t!v)) | v <- indices t ]
-
-buildG :: Bounds -> [Edge] -> Graph
-buildG bounds0 edges0 = accumArray (flip (:)) [] bounds0 edges0
-
-transposeG :: Graph -> Graph
-transposeG g = buildG (bounds g) (reverseE g)
-
-reverseE :: Graph -> [Edge]
-reverseE g = [ (w, v) | (v, w) <- edges g ]
-
-outdegree :: Graph -> Table Int
-outdegree = mapT numEdges
- where numEdges _ ws = length ws
-
-indegree :: Graph -> Table Int
-indegree = outdegree . transposeG
-\end{code}
-
-
-\begin{code}
-graphFromEdges
- :: Ord key
- => [(node, key, [key])]
- -> (Graph, Vertex -> (node, key, [key]))
-graphFromEdges edges0
- = (graph, \v -> vertex_map ! v)
- where
- max_v = length edges0 - 1
- bounds0 = (0,max_v) :: (Vertex, Vertex)
- sorted_edges = sortBy lt edges0
- edges1 = zipWith (,) [0..] sorted_edges
-
- graph = array bounds0 [(,) v (mapMaybe key_vertex ks) | (,) v (_, _, ks) <- edges1]
- key_map = array bounds0 [(,) v k | (,) v (_, k, _ ) <- edges1]
- vertex_map = array bounds0 edges1
-
- (_,k1,_) `lt` (_,k2,_) = k1 `compare` k2
-
- -- key_vertex :: key -> Maybe Vertex
- -- returns Nothing for non-interesting vertices
- key_vertex k = findVertex 0 max_v
- where
- findVertex a b | a > b
- = Nothing
- findVertex a b = case compare k (key_map ! mid) of
- LT -> findVertex a (mid-1)
- EQ -> Just mid
- GT -> findVertex (mid+1) b
- where
- mid = (a + b) `div` 2
-\end{code}
-
-%************************************************************************
-%* *
-%* Trees and forests
-%* *
-%************************************************************************
-
-\begin{code}
-data Tree a = Node a (Forest a)
-type Forest a = [Tree a]
-
-mapTree :: (a -> b) -> (Tree a -> Tree b)
-mapTree f (Node x ts) = Node (f x) (map (mapTree f) ts)
-\end{code}
-
-\begin{code}
-instance Show a => Show (Tree a) where
- showsPrec _ t s = showTree t ++ s
-
-showTree :: Show a => Tree a -> String
-showTree = drawTree . mapTree show
-
-showForest :: Show a => Forest a -> String
-showForest = unlines . map showTree
-
-drawTree :: Tree String -> String
-drawTree = unlines . draw
-
-draw :: Tree String -> [String]
-draw (Node x ts0) = grp this (space (length this)) (stLoop ts0)
- where this = s1 ++ x ++ " "
-
- space n = replicate n ' '
-
- stLoop [] = [""]
- stLoop [t] = grp s2 " " (draw t)
- stLoop (t:ts) = grp s3 s4 (draw t) ++ [s4] ++ rsLoop ts
-
- rsLoop [] = error "rsLoop:Unexpected empty list."
- rsLoop [t] = grp s5 " " (draw t)
- rsLoop (t:ts) = grp s6 s4 (draw t) ++ [s4] ++ rsLoop ts
-
- grp fst0 rst = zipWith (++) (fst0:repeat rst)
-
- [s1,s2,s3,s4,s5,s6] = ["- ", "--", "-+", " |", " `", " +"]
-\end{code}
-
-
-%************************************************************************
-%* *
-%* Depth first search
-%* *
-%************************************************************************
-
-\begin{code}
-#if __GLASGOW_HASKELL__ >= 504
-newSTArray :: Ix i => (i,i) -> e -> ST s (STArray s i e)
-newSTArray = newArray
-
-readSTArray :: Ix i => STArray s i e -> i -> ST s e
-readSTArray = readArray
-
-writeSTArray :: Ix i => STArray s i e -> i -> e -> ST s ()
-writeSTArray = writeArray
-#endif
-
-type Set s = STArray s Vertex Bool
-
-mkEmpty :: Bounds -> ST s (Set s)
-mkEmpty bnds = newSTArray bnds False
-
-contains :: Set s -> Vertex -> ST s Bool
-contains m v = readSTArray m v
-
-include :: Set s -> Vertex -> ST s ()
-include m v = writeSTArray m v True
-\end{code}
-
-\begin{code}
-dff :: Graph -> Forest Vertex
-dff g = dfs g (vertices g)
-
-dfs :: Graph -> [Vertex] -> Forest Vertex
-dfs g vs = prune (bounds g) (map (generate g) vs)
-
-generate :: Graph -> Vertex -> Tree Vertex
-generate g v = Node v (map (generate g) (g!v))
-
-prune :: Bounds -> Forest Vertex -> Forest Vertex
-prune bnds ts = runST (mkEmpty bnds >>= \m ->
- chop m ts)
-
-chop :: Set s -> Forest Vertex -> ST s (Forest Vertex)
-chop _ [] = return []
-chop m (Node v ts : us)
- = contains m v >>= \visited ->
- if visited then
- chop m us
- else
- include m v >>= \_ ->
- chop m ts >>= \as ->
- chop m us >>= \bs ->
- return (Node v as : bs)
-\end{code}
-
-
-%************************************************************************
-%* *
-%* Algorithms
-%* *
-%************************************************************************
-
-------------------------------------------------------------
--- Algorithm 1: depth first search numbering
-------------------------------------------------------------
-
-\begin{code}
-preorder :: Tree a -> [a]
-preorder (Node a ts) = a : preorderF ts
-
-preorderF :: Forest a -> [a]
-preorderF ts = concat (map preorder ts)
-
-tabulate :: Bounds -> [Vertex] -> Table Int
-tabulate bnds vs = array bnds (zipWith (,) vs [1..])
-
-preArr :: Bounds -> Forest Vertex -> Table Int
-preArr bnds = tabulate bnds . preorderF
-\end{code}
-
-
-------------------------------------------------------------
--- Algorithm 2: topological sorting
-------------------------------------------------------------
-
-\begin{code}
-postorder :: Tree a -> [a]
-postorder (Node a ts) = postorderF ts ++ [a]
-
-postorderF :: Forest a -> [a]
-postorderF ts = concat (map postorder ts)
-
-postOrd :: Graph -> [Vertex]
-postOrd = postorderF . dff
-
-topSort :: Graph -> [Vertex]
-topSort = reverse . postOrd
-\end{code}
-
-
-------------------------------------------------------------
--- Algorithm 3: connected components
-------------------------------------------------------------
-
-\begin{code}
-components :: Graph -> Forest Vertex
-components = dff . undirected
-
-undirected :: Graph -> Graph
-undirected g = buildG (bounds g) (edges g ++ reverseE g)
-\end{code}
-
-
--- Algorithm 4: strongly connected components
-
-\begin{code}
-scc :: Graph -> Forest Vertex
-scc g = dfs g (reverse (postOrd (transposeG g)))
-\end{code}
-
-
-------------------------------------------------------------
--- Algorithm 5: Classifying edges
-------------------------------------------------------------
-
-\begin{code}
-back :: Graph -> Table Int -> Graph
-back g post = mapT select g
- where select v ws = [ w | w <- ws, post!v < post!w ]
-
-cross :: Graph -> Table Int -> Table Int -> Graph
-cross g pre post = mapT select g
- where select v ws = [ w | w <- ws, post!v > post!w, pre!v > pre!w ]
-
-forward :: Graph -> Graph -> Table Int -> Graph
-forward g tree pre = mapT select g
- where select v ws = [ w | w <- ws, pre!v < pre!w ] \\ tree!v
-\end{code}
-
-
-------------------------------------------------------------
--- Algorithm 6: Finding reachable vertices
-------------------------------------------------------------
-
-\begin{code}
-reachable :: Graph -> Vertex -> [Vertex]
-reachable g v = preorderF (dfs g [v])
-
-path :: Graph -> Vertex -> Vertex -> Bool
-path g v w = w `elem` (reachable g v)
-\end{code}
-
-
-------------------------------------------------------------
--- Algorithm 7: Biconnected components
-------------------------------------------------------------
-
-\begin{code}
-bcc :: Graph -> Forest [Vertex]
-bcc g = (concat . map bicomps . map (do_label g dnum)) forest
- where forest = dff g
- dnum = preArr (bounds g) forest
-
-do_label :: Graph -> Table Int -> Tree Vertex -> Tree (Vertex,Int,Int)
-do_label g dnum (Node v ts) = Node (v,dnum!v,lv) us
- where us = map (do_label g dnum) ts
- lv = minimum ([dnum!v] ++ [dnum!w | w <- g!v]
- ++ [lu | Node (u,du,lu) xs <- us])
-
-bicomps :: Tree (Vertex,Int,Int) -> Forest [Vertex]
-bicomps (Node (v,_,_) ts)
- = [ Node (v:vs) us | (l,Node vs us) <- map collect ts]
-
-collect :: Tree (Vertex,Int,Int) -> (Int, Tree [Vertex])
-collect (Node (v,dv,lv) ts) = (lv, Node (v:vs) cs)
- where collected = map collect ts
- vs = concat [ ws | (lw, Node ws us) <- collected, lw<dv]
- cs = concat [ if lw<dv then us else [Node (v:ws) us]
- | (lw, Node ws us) <- collected ]
-\end{code}
-