diff options
author | Mateusz Kowalczyk <fuuzetsu@fuuzetsu.co.uk> | 2014-05-05 09:01:03 +0200 |
---|---|---|
committer | Mateusz Kowalczyk <fuuzetsu@fuuzetsu.co.uk> | 2014-05-05 11:00:41 +0200 |
commit | cc269e6b0b615e9e237c35a985e4ace7b9ab0dd9 (patch) | |
tree | f0264138c81909151f9724c1f02f7bf8b30803cb /vendor/attoparsec-0.10.4.0/Data/Attoparsec/Number.hs | |
parent | 7ac2d0f2d31c2e1c7ede09828f3d5ba5626bd0d4 (diff) |
Move parser + parser tests out to own package.
We move some types out that are necessary as well and then
re-export and specialise them in the core Haddock.
Reason for moving out spec tests is that if we're working on the parser,
we can simply work on that and we can ignore the rest of Haddock. The
downside is that it's a little inconvenient if at the end of the day we
want to see that everything passes.
Diffstat (limited to 'vendor/attoparsec-0.10.4.0/Data/Attoparsec/Number.hs')
-rw-r--r-- | vendor/attoparsec-0.10.4.0/Data/Attoparsec/Number.hs | 127 |
1 files changed, 0 insertions, 127 deletions
diff --git a/vendor/attoparsec-0.10.4.0/Data/Attoparsec/Number.hs b/vendor/attoparsec-0.10.4.0/Data/Attoparsec/Number.hs deleted file mode 100644 index bf175f4b..00000000 --- a/vendor/attoparsec-0.10.4.0/Data/Attoparsec/Number.hs +++ /dev/null @@ -1,127 +0,0 @@ -{-# LANGUAGE DeriveDataTypeable #-} --- | --- Module : Data.Attoparsec.Number --- Copyright : Bryan O'Sullivan 2011 --- License : BSD3 --- --- Maintainer : bos@serpentine.com --- Stability : experimental --- Portability : unknown --- --- A simple number type, useful for parsing both exact and inexact --- quantities without losing much precision. -module Data.Attoparsec.Number - ( - Number(..) - ) where - -import Control.DeepSeq (NFData(rnf)) -import Data.Data (Data) -import Data.Function (on) -import Data.Typeable (Typeable) - --- | A numeric type that can represent integers accurately, and --- floating point numbers to the precision of a 'Double'. -data Number = I !Integer - | D {-# UNPACK #-} !Double - deriving (Typeable, Data) - -instance Show Number where - show (I a) = show a - show (D a) = show a - -instance NFData Number where - rnf (I _) = () - rnf (D _) = () - {-# INLINE rnf #-} - -binop :: (Integer -> Integer -> a) -> (Double -> Double -> a) - -> Number -> Number -> a -binop _ d (D a) (D b) = d a b -binop i _ (I a) (I b) = i a b -binop _ d (D a) (I b) = d a (fromIntegral b) -binop _ d (I a) (D b) = d (fromIntegral a) b -{-# INLINE binop #-} - -instance Eq Number where - (==) = binop (==) (==) - {-# INLINE (==) #-} - - (/=) = binop (/=) (/=) - {-# INLINE (/=) #-} - -instance Ord Number where - (<) = binop (<) (<) - {-# INLINE (<) #-} - - (<=) = binop (<=) (<=) - {-# INLINE (<=) #-} - - (>) = binop (>) (>) - {-# INLINE (>) #-} - - (>=) = binop (>=) (>=) - {-# INLINE (>=) #-} - - compare = binop compare compare - {-# INLINE compare #-} - -instance Num Number where - (+) = binop (((I$!).) . (+)) (((D$!).) . (+)) - {-# INLINE (+) #-} - - (-) = binop (((I$!).) . (-)) (((D$!).) . (-)) - {-# INLINE (-) #-} - - (*) = binop (((I$!).) . (*)) (((D$!).) . (*)) - {-# INLINE (*) #-} - - abs (I a) = I $! abs a - abs (D a) = D $! abs a - {-# INLINE abs #-} - - negate (I a) = I $! negate a - negate (D a) = D $! negate a - {-# INLINE negate #-} - - signum (I a) = I $! signum a - signum (D a) = D $! signum a - {-# INLINE signum #-} - - fromInteger = (I$!) . fromInteger - {-# INLINE fromInteger #-} - -instance Real Number where - toRational (I a) = fromIntegral a - toRational (D a) = toRational a - {-# INLINE toRational #-} - -instance Fractional Number where - fromRational = (D$!) . fromRational - {-# INLINE fromRational #-} - - (/) = binop (((D$!).) . (/) `on` fromIntegral) - (((D$!).) . (/)) - {-# INLINE (/) #-} - - recip (I a) = D $! recip (fromIntegral a) - recip (D a) = D $! recip a - {-# INLINE recip #-} - -instance RealFrac Number where - properFraction (I a) = (fromIntegral a,0) - properFraction (D a) = case properFraction a of - (i,d) -> (i,D d) - {-# INLINE properFraction #-} - truncate (I a) = fromIntegral a - truncate (D a) = truncate a - {-# INLINE truncate #-} - round (I a) = fromIntegral a - round (D a) = round a - {-# INLINE round #-} - ceiling (I a) = fromIntegral a - ceiling (D a) = ceiling a - {-# INLINE ceiling #-} - floor (I a) = fromIntegral a - floor (D a) = floor a - {-# INLINE floor #-} |