aboutsummaryrefslogtreecommitdiff
path: root/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs
diff options
context:
space:
mode:
Diffstat (limited to 'haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs')
-rw-r--r--haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs137
1 files changed, 0 insertions, 137 deletions
diff --git a/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs b/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs
deleted file mode 100644
index d0970d90..00000000
--- a/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs
+++ /dev/null
@@ -1,137 +0,0 @@
-{-# LANGUAGE DeriveDataTypeable #-}
--- |
--- Module : Data.Attoparsec.Number
--- Copyright : Bryan O'Sullivan 2007-2015
--- License : BSD3
---
--- Maintainer : bos@serpentine.com
--- Stability : experimental
--- Portability : unknown
---
--- This module is deprecated, and both the module and 'Number' type
--- will be removed in the next major release. Use the
--- <http://hackage.haskell.org/package/scientific scientific> package
--- and the 'Data.Scientific.Scientific' type instead.
---
--- A simple number type, useful for parsing both exact and inexact
--- quantities without losing much precision.
-module Data.Attoparsec.Number
- {-# DEPRECATED "This module will be removed in the next major release." #-}
- (
- Number(..)
- ) where
-
-import Control.DeepSeq (NFData(rnf))
-import Data.Data (Data)
-import Data.Function (on)
-import Data.Typeable (Typeable)
-
--- | A numeric type that can represent integers accurately, and
--- floating point numbers to the precision of a 'Double'.
---
--- /Note/: this type is deprecated, and will be removed in the next
--- major release. Use the 'Data.Scientific.Scientific' type instead.
-data Number = I !Integer
- | D {-# UNPACK #-} !Double
- deriving (Typeable, Data)
-{-# DEPRECATED Number "Use Scientific instead." #-}
-
-instance Show Number where
- show (I a) = show a
- show (D a) = show a
-
-instance NFData Number where
- rnf (I _) = ()
- rnf (D _) = ()
- {-# INLINE rnf #-}
-
-binop :: (Integer -> Integer -> a) -> (Double -> Double -> a)
- -> Number -> Number -> a
-binop _ d (D a) (D b) = d a b
-binop i _ (I a) (I b) = i a b
-binop _ d (D a) (I b) = d a (fromIntegral b)
-binop _ d (I a) (D b) = d (fromIntegral a) b
-{-# INLINE binop #-}
-
-instance Eq Number where
- (==) = binop (==) (==)
- {-# INLINE (==) #-}
-
- (/=) = binop (/=) (/=)
- {-# INLINE (/=) #-}
-
-instance Ord Number where
- (<) = binop (<) (<)
- {-# INLINE (<) #-}
-
- (<=) = binop (<=) (<=)
- {-# INLINE (<=) #-}
-
- (>) = binop (>) (>)
- {-# INLINE (>) #-}
-
- (>=) = binop (>=) (>=)
- {-# INLINE (>=) #-}
-
- compare = binop compare compare
- {-# INLINE compare #-}
-
-instance Num Number where
- (+) = binop (((I$!).) . (+)) (((D$!).) . (+))
- {-# INLINE (+) #-}
-
- (-) = binop (((I$!).) . (-)) (((D$!).) . (-))
- {-# INLINE (-) #-}
-
- (*) = binop (((I$!).) . (*)) (((D$!).) . (*))
- {-# INLINE (*) #-}
-
- abs (I a) = I $! abs a
- abs (D a) = D $! abs a
- {-# INLINE abs #-}
-
- negate (I a) = I $! negate a
- negate (D a) = D $! negate a
- {-# INLINE negate #-}
-
- signum (I a) = I $! signum a
- signum (D a) = D $! signum a
- {-# INLINE signum #-}
-
- fromInteger = (I$!) . fromInteger
- {-# INLINE fromInteger #-}
-
-instance Real Number where
- toRational (I a) = fromIntegral a
- toRational (D a) = toRational a
- {-# INLINE toRational #-}
-
-instance Fractional Number where
- fromRational = (D$!) . fromRational
- {-# INLINE fromRational #-}
-
- (/) = binop (((D$!).) . (/) `on` fromIntegral)
- (((D$!).) . (/))
- {-# INLINE (/) #-}
-
- recip (I a) = D $! recip (fromIntegral a)
- recip (D a) = D $! recip a
- {-# INLINE recip #-}
-
-instance RealFrac Number where
- properFraction (I a) = (fromIntegral a,0)
- properFraction (D a) = case properFraction a of
- (i,d) -> (i,D d)
- {-# INLINE properFraction #-}
- truncate (I a) = fromIntegral a
- truncate (D a) = truncate a
- {-# INLINE truncate #-}
- round (I a) = fromIntegral a
- round (D a) = round a
- {-# INLINE round #-}
- ceiling (I a) = fromIntegral a
- ceiling (D a) = ceiling a
- {-# INLINE ceiling #-}
- floor (I a) = fromIntegral a
- floor (D a) = floor a
- {-# INLINE floor #-}