1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
{-# LANGUAGE PatternGuards #-}
-----------------------------------------------------------------------------
-- |
-- Module : Haddock.Convert
-- Copyright : (c) Isaac Dupree 2009,
-- License : BSD-like
--
-- Maintainer : haddock@projects.haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Conversion between TyThing and HsDecl. This functionality may be moved into
-- GHC at some point.
-----------------------------------------------------------------------------
-- Some other functions turned out to be useful for converting
-- instance heads, which aren't TyThings, so just export everything.
module Haddock.Convert where
import BasicTypes
import HsSyn
import TcType ( tcSplitSigmaTy )
import TypeRep
#if __GLASGOW_HASKELL__ == 612
import Type ( splitKindFunTys )
#else
import Coercion ( splitKindFunTys )
#endif
import Name
import Var
import Class
import TyCon
import DataCon
import TysPrim ( alphaTyVars )
import TysWiredIn ( listTyConName )
import Bag ( emptyBag )
import SrcLoc ( Located, noLoc, unLoc )
-- the main function here! yay!
tyThingToLHsDecl :: TyThing -> LHsDecl Name
tyThingToLHsDecl t = noLoc $ case t of
-- ids (functions and zero-argument a.k.a. CAFs) get a type signature.
-- Including built-in functions like seq.
-- foreign-imported functions could be represented with ForD
-- instead of SigD if we wanted...
--
-- in a future code version we could turn idVarDetails = foreign-call
-- into a ForD instead of a SigD if we wanted. Haddock doesn't
-- need to care.
AnId i -> SigD (synifyIdSig ImplicitizeForAll i)
-- type-constructors (e.g. Maybe) are complicated, put the definition
-- later in the file (also it's used for class associated-types too.)
ATyCon tc -> TyClD (synifyTyCon tc)
-- a data-constructor alone just gets rendered as a function:
ADataCon dc -> SigD (TypeSig (synifyName dc)
(synifyType ImplicitizeForAll (dataConUserType dc)))
-- classes are just a little tedious
AClass cl ->
TyClD $ ClassDecl
(synifyCtx (classSCTheta cl))
(synifyName cl)
(synifyTyVars (classTyVars cl))
(map (\ (l,r) -> noLoc
(map getName l, map getName r) ) $
snd $ classTvsFds cl)
(map (noLoc . synifyIdSig DeleteTopLevelQuantification)
(classMethods cl))
emptyBag --ignore default method definitions, they don't affect signature
(map synifyClassAT (classATs cl))
[] --we don't have any docs at this point
-- class associated-types are a subset of TyCon
-- (mainly only type/data-families)
synifyClassAT :: TyCon -> LTyClDecl Name
synifyClassAT = noLoc . synifyTyCon
synifyTyCon :: TyCon -> TyClDecl Name
synifyTyCon tc
| isFunTyCon tc || isPrimTyCon tc =
TyData
-- arbitrary lie, they are neither algebraic data nor newtype:
DataType
-- no built-in type has any stupidTheta:
(noLoc [])
(synifyName tc)
-- tyConTyVars doesn't work on fun/prim, but we can make them up:
(zipWith
(\fakeTyVar realKind -> noLoc $
KindedTyVar (getName fakeTyVar) realKind)
alphaTyVars --a, b, c... which are unfortunately all kind *
(fst . splitKindFunTys $ tyConKind tc)
)
-- assume primitive types aren't members of data/newtype families:
Nothing
-- we have their kind accurately:
(Just (tyConKind tc))
-- no algebraic constructors:
[]
-- "deriving" needn't be specified:
Nothing
| isOpenSynTyCon tc =
case synTyConRhs tc of
OpenSynTyCon rhs_kind _ ->
TyFamily TypeFamily (synifyName tc) (synifyTyVars (tyConTyVars tc))
(Just rhs_kind)
_ -> error "synifyTyCon: impossible open type synonym?"
| isOpenTyCon tc = --(why no "isOpenAlgTyCon"?)
case algTyConRhs tc of
OpenTyCon _ ->
TyFamily DataFamily (synifyName tc) (synifyTyVars (tyConTyVars tc))
Nothing --always kind '*'
_ -> error "synifyTyCon: impossible open data type?"
| otherwise =
-- (closed) type, newtype, and data
let
-- alg_ only applies to newtype/data
-- syn_ only applies to type
-- others apply to both
alg_nd = if isNewTyCon tc then NewType else DataType
alg_ctx = synifyCtx (tyConStupidTheta tc)
name = synifyName tc
tyvars = synifyTyVars (tyConTyVars tc)
typats = case tyConFamInst_maybe tc of
Nothing -> Nothing
Just (_, indexes) -> Just (map (synifyType WithinType) indexes)
alg_kindSig = Just (tyConKind tc)
-- The data constructors.
--
-- Any data-constructors not exported from the module that *defines* the
-- type will not (cannot) be included.
--
-- Very simple constructors, Haskell98 with no existentials or anything,
-- probably look nicer in non-GADT syntax. In source code, all constructors
-- must be declared with the same (GADT vs. not) syntax, and it probably
-- is less confusing to follow that principle for the documentation as well.
--
-- There is no sensible infix-representation for GADT-syntax constructor
-- declarations. They cannot be made in source code, but we could end up
-- with some here in the case where some constructors use existentials.
-- That seems like an acceptable compromise (they'll just be documented
-- in prefix position), since, otherwise, the logic (at best) gets much more
-- complicated. (would use dataConIsInfix.)
alg_use_gadt_syntax = any (not . isVanillaDataCon) (tyConDataCons tc)
alg_cons = map (synifyDataCon alg_use_gadt_syntax) (tyConDataCons tc)
-- "deriving" doesn't affect the signature, no need to specify any.
alg_deriv = Nothing
syn_type = synifyType WithinType (synTyConType tc)
in if isSynTyCon tc
then TySynonym name tyvars typats syn_type
else TyData alg_nd alg_ctx name tyvars typats alg_kindSig alg_cons alg_deriv
-- User beware: it is your responsibility to pass True (use_gadt_syntax)
-- for any constructor that would be misrepresented by omitting its
-- result-type.
-- But you might want pass False in simple enough cases,
-- if you think it looks better.
synifyDataCon :: Bool -> DataCon -> LConDecl Name
synifyDataCon use_gadt_syntax dc = noLoc $
let
-- dataConIsInfix allegedly tells us whether it was declared with
-- infix *syntax*.
use_infix_syntax = dataConIsInfix dc
use_named_field_syntax = not (null field_tys)
name = synifyName dc
-- con_qvars means a different thing depending on gadt-syntax
qvars = if use_gadt_syntax
then synifyTyVars (dataConAllTyVars dc)
else synifyTyVars (dataConExTyVars dc)
-- skip any EqTheta, use 'orig'inal syntax
ctx = synifyCtx (dataConDictTheta dc)
linear_tys = zipWith (\ty strict ->
let tySyn = synifyType WithinType ty
in case strict of
-- HsNoBang never appears, it's implied instead.
HsNoBang -> tySyn
_ -> noLoc $ HsBangTy strict tySyn
)
(dataConOrigArgTys dc) (dataConStrictMarks dc)
field_tys = zipWith (\field synTy -> ConDeclField
(synifyName field) synTy Nothing)
(dataConFieldLabels dc) linear_tys
tys = case (use_named_field_syntax, use_infix_syntax) of
(True,True) -> error "synifyDataCon: contradiction!"
(True,False) -> RecCon field_tys
(False,False) -> PrefixCon linear_tys
(False,True) -> case linear_tys of
[a,b] -> InfixCon a b
_ -> error "synifyDataCon: infix with non-2 args?"
res_ty = if use_gadt_syntax
then ResTyGADT (synifyType WithinType (dataConOrigResTy dc))
else ResTyH98
-- finally we get synifyDataCon's result!
in ConDecl name Implicit{-we don't know nor care-}
qvars ctx tys res_ty Nothing
False --we don't want any "deprecated GADT syntax" warnings!
synifyName :: NamedThing n => n -> Located Name
synifyName = noLoc . getName
synifyIdSig :: SynifyTypeState -> Id -> Sig Name
synifyIdSig s i = TypeSig (synifyName i) (synifyType s (varType i))
synifyCtx :: [PredType] -> LHsContext Name
synifyCtx = noLoc . map synifyPred
synifyPred :: PredType -> LHsPred Name
synifyPred (ClassP cls tys) =
let sTys = map (synifyType WithinType) tys
in noLoc $
HsClassP (getName cls) sTys
synifyPred (IParam ip ty) =
let sTy = synifyType WithinType ty
-- IPName should be in class NamedThing...
in noLoc $
HsIParam ip sTy
synifyPred (EqPred ty1 ty2) =
let
s1 = synifyType WithinType ty1
s2 = synifyType WithinType ty2
in noLoc $
HsEqualP s1 s2
synifyTyVars :: [TyVar] -> [LHsTyVarBndr Name]
synifyTyVars = map synifyTyVar
where
synifyTyVar tv = noLoc $ let
kind = tyVarKind tv
name = getName tv
in if isLiftedTypeKind kind
#if __GLASGOW_HASKELL__ == 612
then UserTyVar name
#else
then UserTyVar name placeHolderKind
#endif
else KindedTyVar name kind
--states of what to do with foralls:
data SynifyTypeState
= WithinType
-- ^ normal situation. This is the safe one to use if you don't
-- quite understand what's going on.
| ImplicitizeForAll
-- ^ beginning of a function definition, in which, to make it look
-- less ugly, those rank-1 foralls are made implicit.
| DeleteTopLevelQuantification
-- ^ because in class methods the context is added to the type
-- (e.g. adding @forall a. Num a =>@ to @(+) :: a -> a -> a@)
-- which is rather sensible,
-- but we want to restore things to the source-syntax situation where
-- the defining class gets to quantify all its functions for free!
synifyType :: SynifyTypeState -> Type -> LHsType Name
synifyType _ (PredTy{}) = --should never happen.
error "synifyType: PredTys are not, in themselves, source-level types."
synifyType _ (TyVarTy tv) = noLoc $ HsTyVar (getName tv)
synifyType _ (TyConApp tc tys)
-- Use non-prefix tuple syntax where possible, because it looks nicer.
| isTupleTyCon tc, tyConArity tc == length tys =
noLoc $ HsTupleTy (tupleTyConBoxity tc) (map (synifyType WithinType) tys)
-- ditto for lists
| getName tc == listTyConName, [ty] <- tys =
noLoc $ HsListTy (synifyType WithinType ty)
-- Most TyCons:
| otherwise =
foldl (\t1 t2 -> noLoc (HsAppTy t1 t2))
(noLoc $ HsTyVar (getName tc))
(map (synifyType WithinType) tys)
synifyType _ (AppTy t1 t2) = let
s1 = synifyType WithinType t1
s2 = synifyType WithinType t2
in noLoc $ HsAppTy s1 s2
synifyType _ (FunTy t1 t2) = let
s1 = synifyType WithinType t1
s2 = synifyType WithinType t2
in noLoc $ HsFunTy s1 s2
synifyType s forallty@(ForAllTy _tv _ty) =
let (tvs, ctx, tau) = tcSplitSigmaTy forallty
in case s of
DeleteTopLevelQuantification -> synifyType ImplicitizeForAll tau
_ -> let
forallPlicitness = case s of
WithinType -> Explicit
ImplicitizeForAll -> Implicit
_ -> error "synifyType: impossible case!!!"
sTvs = synifyTyVars tvs
sCtx = synifyCtx ctx
sTau = synifyType WithinType tau
in noLoc $
HsForAllTy forallPlicitness sTvs sCtx sTau
synifyInstHead :: ([TyVar], [PredType], Class, [Type]) ->
([HsPred Name], Name, [HsType Name])
synifyInstHead (_, preds, cls, ts) =
( map (unLoc . synifyPred) preds
, getName cls
, map (unLoc . synifyType WithinType) ts
)
|