aboutsummaryrefslogtreecommitdiff
path: root/posts
diff options
context:
space:
mode:
Diffstat (limited to 'posts')
-rw-r--r--posts/2019-03-13-a-tail-of-two-densities.md2
1 files changed, 1 insertions, 1 deletions
diff --git a/posts/2019-03-13-a-tail-of-two-densities.md b/posts/2019-03-13-a-tail-of-two-densities.md
index 0286cd6..34d563e 100644
--- a/posts/2019-03-13-a-tail-of-two-densities.md
+++ b/posts/2019-03-13-a-tail-of-two-densities.md
@@ -16,7 +16,7 @@ a study of [tail bounds](https://en.wikipedia.org/wiki/Concentration_inequality)
of the divergence between
two probability measures, with the end goal of applying it to [stochastic
gradient descent](https://en.wikipedia.org/wiki/Stochastic_gradient_descent).
-It should be suitable for anyone familiar with probability theory.
+This post should be suitable for anyone familiar with probability theory.
I start with the definition of $\epsilon$-differential privacy
(corresponding to max divergence), followed by