aboutsummaryrefslogtreecommitdiff
path: root/posts
diff options
context:
space:
mode:
Diffstat (limited to 'posts')
-rw-r--r--posts/2019-03-13-a-tail-of-two-densities.md4
1 files changed, 2 insertions, 2 deletions
diff --git a/posts/2019-03-13-a-tail-of-two-densities.md b/posts/2019-03-13-a-tail-of-two-densities.md
index 1d9cf75..a7a39cf 100644
--- a/posts/2019-03-13-a-tail-of-two-densities.md
+++ b/posts/2019-03-13-a-tail-of-two-densities.md
@@ -590,14 +590,14 @@ using
$$\int_t^\infty e^{- {y^2 \over 2}} dy < \int_t^\infty {y \over t} e^{- {y^2 \over 2}} dy.$$
-The second is shown using Chernoff bound. For any random variable $\xi$,
+The second is shown using [Chernoff bound](https://en.wikipedia.org/wiki/Chernoff_bound). For any random variable $\xi$,
$$\mathbb P(\xi > t) < {\mathbb E \exp(\lambda \xi) \over \exp(\lambda t)} = \exp(\kappa_\xi(\lambda) - \lambda t), \qquad (6.7)$$
where $\kappa_\xi(\lambda) = \log \mathbb E \exp(\lambda \xi)$ is the
cumulant of $\xi$. Since (6.7) holds for any $\lambda$, we can get the
best bound by minimising $\kappa_\xi(\lambda) - \lambda t$ (a.k.a. the
-Legendre transformation). When $\xi$ is standard normal, we get (6.5).
+[Legendre transformation](https://en.wikipedia.org/wiki/Legendre_transformation)). When $\xi$ is standard normal, we get (6.5).
$\square$
**Remark**. We will use the Chernoff bound extensively in the