diff options
Diffstat (limited to 'site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html')
-rw-r--r-- | site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html | 33 |
1 files changed, 0 insertions, 33 deletions
diff --git a/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html b/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html deleted file mode 100644 index b546aca..0000000 --- a/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html +++ /dev/null @@ -1,33 +0,0 @@ -<!doctype html> -<html lang="en"> - <head> - <meta charset="utf-8"> - <title>Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms</title> - <link rel="stylesheet" href="../assets/css/default.css" /> - <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> - <script src="../assets/js/analytics.js" type="text/javascript"></script> - </head> - <body> - <header> - <span class="logo"> - <a href="../blog.html">Yuchen's Blog</a> - </span> - <nav> - <a href="../index.html">About</a><a href="../postlist.html">All posts</a><a href="../blog-feed.xml">Feed</a> - </nav> - </header> - - <div class="main"> - <div class="bodyitem"> - <h2> Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms </h2> - <p>Posted on 2014-04-01</p> - <p>In <a href="http://link.springer.com/article/10.1007/s10801-014-0505-x">this paper</a> a symmetry property analogous to the well known symmetry property of the normal Robinson-Schensted algorithm has been shown for the \(q\)-weighted Robinson-Schensted algorithm. The proof uses a generalisation of the growth diagram approach introduced by Fomin. This approach, which uses “growth graphs”, can also be applied to a wider class of insertion algorithms which have a branching structure.</p> -<figure> -<img src="../assets/resources/1423graph.jpg" alt="Growth graph of q-RS for 1423" /><figcaption>Growth graph of q-RS for 1423</figcaption> -</figure> -<p>Above is the growth graph of the \(q\)-weighted Robinson-Schensted algorithm for the permutation \({1 2 3 4\choose1 4 2 3}\).</p> - - </div> - </div> - </body> -</html> |