diff options
Diffstat (limited to 'site/posts/2015-07-01-causal-quantum-product-levy-area.html')
| -rw-r--r-- | site/posts/2015-07-01-causal-quantum-product-levy-area.html | 30 | 
1 files changed, 0 insertions, 30 deletions
| diff --git a/site/posts/2015-07-01-causal-quantum-product-levy-area.html b/site/posts/2015-07-01-causal-quantum-product-levy-area.html deleted file mode 100644 index 3fdaa72..0000000 --- a/site/posts/2015-07-01-causal-quantum-product-levy-area.html +++ /dev/null @@ -1,30 +0,0 @@ -<!doctype html> -<html lang="en"> -    <head> -        <meta charset="utf-8"> -        <title>On a causal quantum double product integral related to Lévy stochastic area.</title> -        <link rel="stylesheet" href="../assets/css/default.css" /> -        <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> -        <script src="../assets/js/analytics.js" type="text/javascript"></script> -    </head> -    <body> -        <header> -            <span class="logo"> -                <a href="../blog.html">Yuchen's Blog</a> -            </span> -            <nav> -                <a href="../index.html">About</a><a href="../postlist.html">All posts</a><a href="../blog-feed.xml">Feed</a> -            </nav> -        </header> - -        <div class="main"> -            <div class="bodyitem"> -                <h2> On a causal quantum double product integral related to Lévy stochastic area. </h2> -                <p>Posted on 2015-07-01</p> -                    <p>In <a href="https://arxiv.org/abs/1506.04294">this paper</a> with <a href="http://homepages.lboro.ac.uk/~marh3/">Robin</a> we study the family of causal double product integrals \[ \prod_{a < x < y < b}\left(1 + i{\lambda \over 2}(dP_x dQ_y - dQ_x dP_y) + i {\mu \over 2}(dP_x dP_y + dQ_x dQ_y)\right) \]</p> -<p>where <span class="math inline">\(P\)</span> and <span class="math inline">\(Q\)</span> are the mutually noncommuting momentum and position Brownian motions of quantum stochastic calculus. The evaluation is motivated heuristically by approximating the continuous double product by a discrete product in which infinitesimals are replaced by finite increments. The latter is in turn approximated by the second quantisation of a discrete double product of rotation-like operators in different planes due to a result in <a href="http://www.actaphys.uj.edu.pl/findarticle?series=Reg&vol=46&page=1851">(Hudson-Pei2015)</a>. The main problem solved in this paper is the explicit evaluation of the continuum limit <span class="math inline">\(W\)</span> of the latter, and showing that <span class="math inline">\(W\)</span> is a unitary operator. The kernel of <span class="math inline">\(W\)</span> is written in terms of Bessel functions, and the evaluation is achieved by working on a lattice path model and enumerating linear extensions of related partial orderings, where the enumeration turns out to be heavily related to Dyck paths and generalisations of Catalan numbers.</p> - -            </div> -        </div> -    </body> -</html> | 
