diff options
Diffstat (limited to 'cabal-plan/src-topograph/Topograph.hs')
-rw-r--r-- | cabal-plan/src-topograph/Topograph.hs | 527 |
1 files changed, 527 insertions, 0 deletions
diff --git a/cabal-plan/src-topograph/Topograph.hs b/cabal-plan/src-topograph/Topograph.hs new file mode 100644 index 0000000..13c17a6 --- /dev/null +++ b/cabal-plan/src-topograph/Topograph.hs @@ -0,0 +1,527 @@ +{-# LANGUAGE RankNTypes, ScopedTypeVariables, RecordWildCards #-} +-- | Copyright: (c) 2018, Oleg Grenrus +-- SPDX-License-Identifier: BSD-3-Clause +-- +-- Tools to work with Directed Acyclic Graphs, +-- by taking advantage of topological sorting. +-- +module Topograph ( + -- * Graph + -- $setup + + G (..), + runG, + runG', + -- * All paths + allPaths, + allPaths', + allPathsTree, + -- * DFS + dfs, + dfsTree, + -- * Longest path + longestPathLengths, + -- * Transpose + transpose, + -- * Transitive reduction + reduction, + -- * Transitive closure + closure, + -- * Query + edgesSet, + adjacencyMap, + adjacencyList, + -- * Helper functions + treePairs, + pairs, + getDown, + ) where + +import Prelude () +import Prelude.Compat +import Data.Orphans () + +import Control.Monad.ST (ST, runST) +import Data.Maybe (fromMaybe, catMaybes, mapMaybe) +import Data.Monoid (First (..)) +import Data.List (sort) +import Data.Foldable (for_) +import Data.Ord (Down (..)) +import qualified Data.Graph as G +import Data.Tree as T +import Data.Map (Map) +import qualified Data.Map as M +import Data.Set (Set) +import qualified Data.Set as S +import qualified Data.Vector as V +import qualified Data.Vector.Unboxed as U +import qualified Data.Vector.Unboxed.Mutable as MU + +import Debug.Trace + +-- | Graph representation. +data G v a = G + { gVertices :: [a] -- ^ all vertices, in topological order. + , gFromVertex :: a -> v -- ^ retrieve original vertex data. /O(1)/ + , gToVertex :: v -> Maybe a -- ^ /O(log n)/ + , gEdges :: a -> [a] -- ^ Outgoing edges. + , gDiff :: a -> a -> Int -- ^ Upper bound of the path length. Negative if there aren't path. /O(1)/ + , gVerticeCount :: Int + , gToInt :: a -> Int + } + +-- | Run action on topologically sorted representation of the graph. +-- +-- === __Examples__ +-- +-- ==== Topological sorting +-- +-- >>> runG example $ \G {..} -> map gFromVertex gVertices +-- Right "axbde" +-- +-- Vertices are sorted +-- +-- >>> runG example $ \G {..} -> map gFromVertex $ sort gVertices +-- Right "axbde" +-- +-- ==== Outgoing edges +-- +-- >>> runG example $ \G {..} -> map (map gFromVertex . gEdges) gVertices +-- Right ["xbde","de","d","e",""] +-- +-- Note: edges are always larger than source vertex: +-- +-- >>> runG example $ \G {..} -> getAll $ foldMap (\a -> foldMap (\b -> All (a < b)) (gEdges a)) gVertices +-- Right True +-- +-- ==== Not DAG +-- +-- >>> let loop = M.map S.fromList $ M.fromList [('a', "bx"), ('b', "cx"), ('c', "ax"), ('x', "")] +-- >>> runG loop $ \G {..} -> map gFromVertex gVertices +-- Left "abc" +-- +-- >>> runG (M.singleton 'a' (S.singleton 'a')) $ \G {..} -> map gFromVertex gVertices +-- Left "aa" +-- +runG + :: forall v r. Ord v + => Map v (Set v) -- ^ Adjacency Map + -> (forall i. Ord i => G v i -> r) -- ^ function on linear indices + -> Either [v] r -- ^ Return the result or a cycle in the graph. +runG m f + | Just l <- loop = Left (map (indices V.!) l) + | otherwise = Right (f g) + where + gr :: G.Graph + r :: G.Vertex -> ((), v, [v]) + _t :: v -> Maybe G.Vertex + + (gr, r, _t) = G.graphFromEdges [ ((), v, S.toAscList us) | (v, us) <- M.toAscList m ] + + r' :: G.Vertex -> v + r' i = case r i of (_, v, _) -> v + + topo :: [G.Vertex] + topo = G.topSort gr + + indices :: V.Vector v + indices = V.fromList (map r' topo) + + revIndices :: Map v Int + revIndices = M.fromList $ zip (map r' topo) [0..] + + edges :: V.Vector [Int] + edges = V.map + (\v -> maybe + [] + (\sv -> sort $ mapMaybe (\v' -> M.lookup v' revIndices) $ S.toList sv) + (M.lookup v m)) + indices + + -- TODO: let's see if this check is too expensive + loop :: Maybe [Int] + loop = getFirst $ foldMap (\a -> foldMap (check a) (gEdges g a)) (gVertices g) + where + check a b + | a < b = First Nothing + -- TODO: here we could use shortest path + | otherwise = First $ case allPaths g b a of + [] -> Nothing + (p : _) -> Just p + + g :: G v Int + g = G + { gVertices = [0 .. V.length indices - 1] + , gFromVertex = (indices V.!) + , gToVertex = (`M.lookup` revIndices) + , gDiff = \a b -> b - a + , gEdges = (edges V.!) + , gVerticeCount = V.length indices + , gToInt = id + } + +-- | Like 'runG' but returns 'Maybe' +runG' + :: forall v r. Ord v + => Map v (Set v) -- ^ Adjacency Map + -> (forall i. Ord i => G v i -> r) -- ^ function on linear indices + -> Maybe r -- ^ Return the result or 'Nothing' if there is a cycle. +runG' m f = either (const Nothing) Just (runG m f) + +------------------------------------------------------------------------------- +-- All paths +------------------------------------------------------------------------------- + +-- | All paths from @a@ to @b@. Note that every path has at least 2 elements, start and end. +-- Use 'allPaths'' for the intermediate steps only. +-- +-- >>> runG example $ \g@G{..} -> fmap3 gFromVertex $ allPaths g <$> gToVertex 'a' <*> gToVertex 'e' +-- Right (Just ["axde","axe","abde","ade","ae"]) +-- +-- >>> runG example $ \g@G{..} -> fmap3 gFromVertex $ allPaths g <$> gToVertex 'a' <*> gToVertex 'a' +-- Right (Just []) +-- +allPaths :: forall v a. Ord a => G v a -> a -> a -> [[a]] +allPaths g a b = map (\p -> a : p) (allPaths' g a b [b]) + +-- | 'allPaths' without begin and end elements. +-- +-- >>> runG example $ \g@G{..} -> fmap3 gFromVertex $ allPaths' g <$> gToVertex 'a' <*> gToVertex 'e' <*> pure [] +-- Right (Just ["xd","x","bd","d",""]) +-- +allPaths' :: forall v a. Ord a => G v a -> a -> a -> [a] -> [[a]] +allPaths' G {..} a b end = concatMap go (gEdges a) where + go :: a -> [[a]] + go i + | i == b = [end] + | otherwise = + let js :: [a] + js = filter (<= b) $ gEdges i + + js2b :: [[a]] + js2b = concatMap go js + + in map (i:) js2b + + + +-- | Like 'allPaths' but return a 'T.Tree'. +-- +-- >>> let t = runG example $ \g@G{..} -> fmap3 gFromVertex $ allPathsTree g <$> gToVertex 'a' <*> gToVertex 'e' +-- >>> fmap3 (T.foldTree $ \a bs -> if null bs then [[a]] else concatMap (map (a:)) bs) t +-- Right (Just (Just ["axde","axe","abde","ade","ae"])) +-- +-- >>> fmap3 (S.fromList . treePairs) t +-- Right (Just (Just (fromList [('a','b'),('a','d'),('a','e'),('a','x'),('b','d'),('d','e'),('x','d'),('x','e')]))) +-- +-- >>> let ls = runG example $ \g@G{..} -> fmap3 gFromVertex $ allPaths g <$> gToVertex 'a' <*> gToVertex 'e' +-- >>> fmap2 (S.fromList . concatMap pairs) ls +-- Right (Just (fromList [('a','b'),('a','d'),('a','e'),('a','x'),('b','d'),('d','e'),('x','d'),('x','e')])) +-- +-- >>> traverse3_ dispTree t +-- 'a' +-- 'x' +-- 'd' +-- 'e' +-- 'e' +-- 'b' +-- 'd' +-- 'e' +-- 'd' +-- 'e' +-- 'e' +-- +-- >>> traverse3_ (putStrLn . T.drawTree . fmap show) t +-- 'a' +-- | +-- +- 'x' +-- | | +-- | +- 'd' +-- | | | +-- | | `- 'e' +-- | | +-- | `- 'e' +-- ... +-- +allPathsTree :: forall v a. Ord a => G v a -> a -> a -> Maybe (T.Tree a) +allPathsTree G {..} a b = go a where + go :: a -> Maybe (T.Tree a) + go i + | i == b = Just (T.Node b []) + | otherwise = case mapMaybe go $ filter (<= b) $ gEdges i of + [] -> Nothing + js -> Just (T.Node i js) + +------------------------------------------------------------------------------- +-- DFS +------------------------------------------------------------------------------- + +-- | Depth-first paths starting at a vertex. +-- +-- >>> runG example $ \g@G{..} -> fmap3 gFromVertex $ dfs g <$> gToVertex 'x' +-- Right (Just ["xde","xe"]) +-- +dfs :: forall v a. Ord a => G v a -> a -> [[a]] +dfs G {..} = go where + go :: a -> [[a]] + go a = case gEdges a of + [] -> [[a]] + bs -> concatMap (\b -> map (a :) (go b)) bs + +-- | like 'dfs' but returns a 'T.Tree'. +-- +-- >>> traverse2_ dispTree $ runG example $ \g@G{..} -> fmap2 gFromVertex $ dfsTree g <$> gToVertex 'x' +-- 'x' +-- 'd' +-- 'e' +-- 'e' +dfsTree :: forall v a. Ord a => G v a -> a -> T.Tree a +dfsTree G {..} = go where + go :: a -> Tree a + go a = case gEdges a of + [] -> T.Node a [] + bs -> T.Node a $ map go bs + +------------------------------------------------------------------------------- +-- Longest / shortest path +------------------------------------------------------------------------------- + +-- | Longest paths lengths starting from a vertex. +-- +-- >>> runG example $ \g@G{..} -> longestPathLengths g <$> gToVertex 'a' +-- Right (Just [0,1,1,2,3]) +-- +-- >>> runG example $ \G {..} -> map gFromVertex gVertices +-- Right "axbde" +-- +-- >>> runG example $ \g@G{..} -> longestPathLengths g <$> gToVertex 'b' +-- Right (Just [0,0,0,1,2]) +-- +longestPathLengths :: Ord a => G v a -> a -> [Int] +longestPathLengths = pathLenghtsImpl max + +-- | Shortest paths lengths starting from a vertex. +-- +-- >>> runG example $ \g@G{..} -> shortestPathLengths g <$> gToVertex 'a' +-- Right (Just [0,1,1,1,1]) +-- +-- >>> runG example $ \g@G{..} -> shortestPathLengths g <$> gToVertex 'b' +-- Right (Just [0,0,0,1,2]) +-- +shortestPathLengths :: Ord a => G v a -> a -> [Int] +shortestPathLengths = pathLenghtsImpl min' where + min' 0 y = y + min' x y = min x y + +pathLenghtsImpl :: forall v a. Ord a => (Int -> Int -> Int) -> G v a -> a -> [Int] +pathLenghtsImpl merge G {..} a = runST $ do + v <- MU.replicate (length gVertices) (0 :: Int) + go v (S.singleton a) + v' <- U.freeze v + pure (U.toList v') + where + go :: MU.MVector s Int -> Set a -> ST s () + go v xs = do + case S.minView xs of + Nothing -> pure () + Just (x, xs') -> do + c <- MU.unsafeRead v (gToInt x) + let ys = S.fromList $ gEdges x + for_ ys $ \y -> + flip (MU.unsafeModify v) (gToInt y) $ \d -> merge d (c + 1) + go v (xs' `S.union` ys) + +------------------------------------------------------------------------------- +-- Transpose +------------------------------------------------------------------------------- + +-- | Graph with all edges reversed. +-- +-- >>> runG example $ adjacencyList . transpose +-- Right [('a',""),('b',"a"),('d',"abx"),('e',"adx"),('x',"a")] +-- +-- === __Properties__ +-- +-- Commutes with 'closure' +-- +-- >>> runG example $ adjacencyList . closure . transpose +-- Right [('a',""),('b',"a"),('d',"abx"),('e',"abdx"),('x',"a")] +-- +-- >>> runG example $ adjacencyList . transpose . closure +-- Right [('a',""),('b',"a"),('d',"abx"),('e',"abdx"),('x',"a")] +-- +-- Commutes with 'reduction' +-- +-- >>> runG example $ adjacencyList . reduction . transpose +-- Right [('a',""),('b',"a"),('d',"bx"),('e',"d"),('x',"a")] +-- +-- >>> runG example $ adjacencyList . transpose . reduction +-- Right [('a',""),('b',"a"),('d',"bx"),('e',"d"),('x',"a")] +-- +transpose :: forall v a. Ord a => G v a -> G v (Down a) +transpose G {..} = G + { gVertices = map Down $ reverse gVertices + , gFromVertex = gFromVertex . getDown + , gToVertex = fmap Down . gToVertex + , gEdges = gEdges' + , gDiff = \(Down a) (Down b) -> gDiff b a + , gVerticeCount = gVerticeCount + , gToInt = \(Down a) -> gVerticeCount - gToInt a - 1 + } + where + gEdges' :: Down a -> [Down a] + gEdges' (Down a) = es V.! gToInt a + + -- Note: in original order! + es :: V.Vector [Down a] + es = V.fromList $ map (map Down . revEdges) gVertices + + revEdges :: a -> [a] + revEdges x = concatMap (\y -> [y | x `elem` gEdges y ]) gVertices + + +------------------------------------------------------------------------------- +-- Reduction +------------------------------------------------------------------------------- + +-- | Transitive reduction. +-- +-- Smallest graph, +-- such that if there is a path from /u/ to /v/ in the original graph, +-- then there is also such a path in the reduction. +-- +-- >>> runG example $ \g -> adjacencyList $ reduction g +-- Right [('a',"bx"),('b',"d"),('d',"e"),('e',""),('x',"d")] +-- +-- Taking closure first doesn't matter: +-- +-- >>> runG example $ \g -> adjacencyList $ reduction $ closure g +-- Right [('a',"bx"),('b',"d"),('d',"e"),('e',""),('x',"d")] +-- +reduction :: Ord a => G v a -> G v a +reduction = transitiveImpl (== 1) + +------------------------------------------------------------------------------- +-- Closure +------------------------------------------------------------------------------- + +-- | Transitive closure. +-- +-- A graph, +-- such that if there is a path from /u/ to /v/ in the original graph, +-- then there is an edge from /u/ to /v/ in the closure. +-- +-- >>> runG example $ \g -> adjacencyList $ closure g +-- Right [('a',"bdex"),('b',"de"),('d',"e"),('e',""),('x',"de")] +-- +-- Taking reduction first, doesn't matter: +-- +-- >>> runG example $ \g -> adjacencyList $ closure $ reduction g +-- Right [('a',"bdex"),('b',"de"),('d',"e"),('e',""),('x',"de")] +-- +closure :: Ord a => G v a -> G v a +closure = transitiveImpl (/= 0) + +transitiveImpl :: forall v a. Ord a => (Int -> Bool) -> G v a -> G v a +transitiveImpl pred g@G {..} = g { gEdges = gEdges' } where + gEdges' :: a -> [a] + gEdges' a = es V.! gToInt a + + es :: V.Vector [a] + es = V.fromList $ map f gVertices where + + f :: a -> [a] + f x = catMaybes $ zipWith edge gVertices (longestPathLengths g x) + + edge y i | pred i = Just y + | otherwise = Nothing + +------------------------------------------------------------------------------- +-- Display +------------------------------------------------------------------------------- + +-- | Recover adjacency map representation from the 'G'. +-- +-- >>> runG example adjacencyMap +-- Right (fromList [('a',fromList "bdex"),('b',fromList "d"),('d',fromList "e"),('e',fromList ""),('x',fromList "de")]) +adjacencyMap :: Ord v => G v a -> Map v (Set v) +adjacencyMap G {..} = M.fromList $ map f gVertices where + f x = (gFromVertex x, S.fromList $ map gFromVertex $ gEdges x) + +-- | Adjacency list representation of 'G'. +-- +-- >>> runG example adjacencyList +-- Right [('a',"bdex"),('b',"d"),('d',"e"),('e',""),('x',"de")] +adjacencyList :: Ord v => G v a -> [(v, [v])] +adjacencyList = flattenAM . adjacencyMap + +flattenAM :: Map a (Set a) -> [(a, [a])] +flattenAM = map (fmap S.toList) . M.toList + +-- | +-- +-- >>> runG example $ \g@G{..} -> map (\(a,b) -> [gFromVertex a, gFromVertex b]) $ S.toList $ edgesSet g +-- Right ["ax","ab","ad","ae","xd","xe","bd","de"] +edgesSet :: Ord a => G v a -> Set (a, a) +edgesSet G {..} = S.fromList + [ (x, y) + | x <- gVertices + , y <- gEdges x + ] + +------------------------------------------------------------------------------- +-- Utilities +------------------------------------------------------------------------------- + +-- | Like 'pairs' but for 'T.Tree'. +treePairs :: Tree a -> [(a,a)] +treePairs (T.Node i js) = + [ (i, j) | T.Node j _ <- js ] ++ concatMap treePairs js + +-- | Consequtive pairs. +-- +-- >>> pairs [1..10] +-- [(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)] +-- +-- >>> pairs [] +-- [] +-- +pairs :: [a] -> [(a, a)] +pairs [] = [] +pairs xs = zip xs (tail xs) + +-- | Unwrap 'Down'. +getDown :: Down a -> a +getDown (Down a) = a + +------------------------------------------------------------------------------- +-- Setup +------------------------------------------------------------------------------- + +-- $setup +-- +-- Graph used in examples (with all arrows pointing down) +-- +-- @ +-- a ----- +-- / | \\ \\ +-- b | x \\ +-- \\ | / \\ | +-- d \\ | +-- ------- e +-- @ +-- +-- See <https://en.wikipedia.org/wiki/Transitive_reduction> for a picture. +-- +-- >>> let example :: Map Char (Set Char); example = M.map S.fromList $ M.fromList [('a', "bxde"), ('b', "d"), ('x', "de"), ('d', "e"), ('e', "")] +-- +-- >>> :set -XRecordWildCards +-- >>> import Data.Monoid (All (..)) +-- >>> import Data.Foldable (traverse_) +-- +-- >>> let fmap2 = fmap . fmap +-- >>> let fmap3 = fmap . fmap2 +-- >>> let traverse2_ = traverse_ . traverse_ +-- >>> let traverse3_ = traverse_ . traverse2_ +-- +-- >>> let dispTree :: Show a => Tree a -> IO (); dispTree = go 0 where go i (T.Node x xs) = putStrLn (replicate (i * 2) ' ' ++ show x) >> traverse_ (go (succ i)) xs |