{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE RecordWildCards #-}
module Haddock.Interface.Specialize
( specializeInstHead
) where
import Haddock.Syb
import Haddock.Types
import GHC
import Name
import FastString
import Control.Monad
import Control.Monad.Trans.State
import Data.Data
import qualified Data.List as List
import Data.Maybe
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set
-- | Instantiate all occurrences of given names with corresponding types.
specialize :: Data a => [(Name, HsType GhcRn)] -> a -> a
specialize specs = go spec_map0
where
go :: forall x. Data x => Map Name (HsType GhcRn) -> x -> x
go spec_map = everywhereButType @Name $ mkT $ sugar . strip_kind_sig . specialize_ty_var spec_map
strip_kind_sig :: HsType name -> HsType name
strip_kind_sig (HsKindSig _ (L _ t) _) = t
strip_kind_sig typ = typ
specialize_ty_var :: Map Name (HsType GhcRn) -> HsType GhcRn -> HsType GhcRn
specialize_ty_var spec_map (HsTyVar _ _ (L _ name'))
| Just t <- Map.lookup name' spec_map = t
specialize_ty_var _ typ = typ
-- This is a tricky recursive definition. By adding in the specializations
-- one by one, we should avoid infinite loops.
spec_map0 = foldr (\(n,t) acc -> Map.insert n (go acc t) acc) mempty specs
-- | Instantiate given binders with corresponding types.
--
-- Again, it is just a convenience function around 'specialize'. Note that
-- length of type list should be the same as the number of binders.
specializeTyVarBndrs :: Data a
=> LHsQTyVars GhcRn -> [HsType GhcRn]
-> a -> a
specializeTyVarBndrs bndrs typs =
specialize $ zip bndrs' typs
where
bndrs' = map (bname . unLoc) . hsq_explicit $ bndrs
bname (UserTyVar _ (L _ name)) = name
bname (KindedTyVar _ (L _ name) _) = name
bname (XTyVarBndr _) = error "haddock:specializeTyVarBndrs"
specializePseudoFamilyDecl :: LHsQTyVars GhcRn -> [HsType GhcRn]
-> PseudoFamilyDecl GhcRn
-> PseudoFamilyDecl GhcRn
specializePseudoFamilyDecl bndrs typs decl =
decl {pfdTyVars = map (specializeTyVarBndrs bndrs typs) (pfdTyVars decl)}
specializeSig :: LHsQTyVars GhcRn -> [HsType GhcRn]
-> Sig GhcRn
-> Sig GhcRn
specializeSig bndrs typs (TypeSig _ lnames typ) =
TypeSig noExt lnames (typ {hswc_body = (hswc_body typ) {hsib_body = noLoc typ'}})
where
true_type :: HsType GhcRn
true_type = unLoc (hsSigWcType typ)
typ' :: HsType GhcRn
typ' = rename fv $ specializeTyVarBndrs bndrs typs true_type
fv = foldr Set.union Set.empty . map freeVariables $ typs
specializeSig _ _ sig = sig
-- | Make all details of instance head (signatures, associated types)
-- specialized to that particular instance type.
specializeInstHead :: InstHead GhcRn -> InstHead GhcRn
specializeInstHead ihd@InstHead { ihdInstType = clsi@ClassInst { .. }, .. } =
ihd { ihdInstType = instType' }
where
instType' = clsi
{ clsiSigs = map specializeSig' clsiSigs
, clsiAssocTys = map specializeFamilyDecl' clsiAssocTys
}
specializeSig' = specializeSig clsiTyVars ihdTypes
specializeFamilyDecl' = specializePseudoFamilyDecl clsiTyVars ihdTypes
specializeInstHead ihd = ihd
-- | Make given type use tuple and list literals where appropriate.
--
-- After applying 'specialize' function some terms may not use idiomatic list
-- and tuple literals resulting in types like @[] a@ or @(,,) a b c@. This
-- can be fixed using 'sugar' function, that will turn such types into @[a]@
-- and @(a, b, c)@.
sugar :: HsType GhcRn -> HsType GhcRn
sugar = sugarOperators . sugarTuples . sugarLists
sugarLists :: NamedThing (IdP (GhcPass p)) => HsType (GhcPass p) -> HsType (GhcPass p)
sugarLists (HsAppTy _ (L _ (HsTyVar _ _ (L _ name))) ltyp)
| isBuiltInSyntax name' && strName == "[]" = HsListTy NoExt ltyp
where
name' = getName name
strName = occNameString . nameOccName $ name'
sugarLists typ = typ
sugarTuples :: NamedThing (IdP (GhcPass p)) => HsType (GhcPass p) -> HsType (GhcPass p)
sugarTuples typ =
aux [] typ
where
aux apps (HsAppTy _ (L _ ftyp) atyp) = aux (atyp:apps) ftyp
aux apps (HsParTy _ (L _ typ')) = aux apps typ'
aux apps (HsTyVar _ _ (L _ name))
| isBuiltInSyntax name' && suitable = HsTupleTy NoExt HsBoxedTuple apps
where
name' = getName name
strName = occNameString . nameOccName $ name'
suitable = case parseTupleArity strName of
Just arity -> arity == length apps
Nothing -> False
aux _ _ = typ
sugarOperators :: NamedThing (IdP (GhcPass p)) => HsType (GhcPass p) -> HsType (GhcPass p)
sugarOperators (HsAppTy _ (L _ (HsAppTy _ (L _ (HsTyVar _ _ (L l name))) la)) lb)
| isSymOcc $ getOccName name' = mkHsOpTy la (L l name) lb
| isBuiltInSyntax name' && getOccString name == "(->)" = HsFunTy NoExt la lb
where
name' = getName name
sugarOperators typ = typ
-- | Compute arity of given tuple operator.
--
-- >>> parseTupleArity "(,,)"
-- Just 3
--
-- >>> parseTupleArity "(,,,,)"
-- Just 5
--
-- >>> parseTupleArity "abc"
-- Nothing
--
-- >>> parseTupleArity "()"
-- Nothing
parseTupleArity :: String -> Maybe Int
parseTupleArity ('(':commas) = do
n <- parseCommas commas
guard $ n /= 0
return $ n + 1
where
parseCommas (',':rest) = (+ 1) <$> parseCommas rest
parseCommas ")" = Just 0
parseCommas _ = Nothing
parseTupleArity _ = Nothing
-- | Haskell AST type representation.
--
-- This type is used for renaming (more below), essentially the ambiguous (!)
-- version of 'Name'. So, why is this 'FastString' instead of 'OccName'? Well,
-- it was 'OccName' before, but turned out that 'OccName' sometimes also
-- contains namespace information, differentiating visually same types.
--
-- And 'FastString' is used because it is /visual/ part of 'OccName' - it is
-- not converted to 'String' or alike to avoid new allocations. Additionally,
-- since it is stored mostly in 'Set', fast comparison of 'FastString' is also
-- quite nice.
type NameRep = FastString
getNameRep :: NamedThing name => name -> NameRep
getNameRep = occNameFS . getOccName
nameRepString :: NameRep -> String
nameRepString = unpackFS
stringNameRep :: String -> NameRep
stringNameRep = mkFastString
setInternalNameRep :: SetName name => NameRep -> name -> name
setInternalNameRep = setInternalOccName . mkVarOccFS
setInternalOccName :: SetName name => OccName -> name -> name
setInternalOccName occ name =
setName nname' name
where
nname = getName name
nname' = mkInternalName (nameUnique nname) occ (nameSrcSpan nname)
-- | Compute set of free variables of given type.
freeVariables :: HsType GhcRn -> Set Name
freeVariables =
everythingWithState Set.empty Set.union query
where
query term ctx = case cast term :: Maybe (HsType GhcRn) of
Just (HsForAllTy _ bndrs _) ->
(Set.empty, Set.union ctx (bndrsNames bndrs))
Just (HsTyVar _ _ (L _ name))
| getName name `Set.member` ctx -> (Set.empty, ctx)
| otherwise -> (Set.singleton $ getName name, ctx)
_ -> (Set.empty, ctx)
bndrsNames = Set.fromList . map (getName . tyVarName . unLoc)
-- | Make given type visually unambiguous.
--
-- After applying 'specialize' method, some free type variables may become
-- visually ambiguous - for example, having @a -> b@ and specializing @a@ to
-- @(a -> b)@ we get @(a -> b) -> b@ where first occurrence of @b@ refers to
-- different type variable than latter one. Applying 'rename' function
-- will fix that type to be visually unambiguous again (making it something
-- like @(a -> b0) -> b@).
rename :: Set Name -> HsType GhcRn -> HsType GhcRn
rename fv typ = evalState (renameType typ) env
where
env = RenameEnv
{ rneHeadFVs = Map.fromList . map mkPair . Set.toList $ fv
, rneSigFVs = Set.map getNameRep $ freeVariables typ
, rneCtx = Map.empty
}
mkPair name = (getNameRep name, name)
-- | Renaming monad.
type Rename name = State (RenameEnv name)
data RenameEnv name = RenameEnv
{ rneHeadFVs :: Map NameRep Name
, rneSigFVs :: Set NameRep
, rneCtx :: Map Name name
}
renameType :: HsType GhcRn -> Rename (IdP GhcRn) (HsType GhcRn)
renameType (HsForAllTy x bndrs lt) =
HsForAllTy x
<$> mapM (located renameBinder) bndrs
<*> renameLType lt
renameType (HsQualTy x lctxt lt) =
HsQualTy x
<$> located renameContext lctxt
<*> renameLType lt
renameType (HsTyVar x ip name) = HsTyVar x ip <$> located renameName name
renameType t@(HsStarTy _ _) = pure t
renameType (HsAppTy x lf la) = HsAppTy x <$> renameLType lf <*> renameLType la
renameType (HsFunTy x la lr) = HsFunTy x <$> renameLType la <*> renameLType lr
renameType (HsListTy x lt) = HsListTy x <$> renameLType lt
renameType (HsTupleTy x srt lt) = HsTupleTy x srt <$> mapM renameLType lt
renameType (HsSumTy x lt) = HsSumTy x <$> mapM renameLType lt
renameType (HsOpTy x la lop lb) =
HsOpTy x <$> renameLType la <*> located renameName lop <*> renameLType lb
renameType (HsParTy x lt) = HsParTy x <$> renameLType lt
renameType (HsIParamTy x ip lt) = HsIParamTy x ip <$> renameLType lt
renameType (HsKindSig x lt lk) = HsKindSig x <$> renameLType lt <*> pure lk
renameType t@(HsSpliceTy _ _) = pure t
renameType (HsDocTy x lt doc) = HsDocTy x <$> renameLType lt <*> pure doc
renameType (HsBangTy x bang lt) = HsBangTy x bang <$> renameLType lt
renameType t@(HsRecTy _ _) = pure t
renameType t@(XHsType (NHsCoreTy _)) = pure t
renameType (HsExplicitListTy x ip ltys) =
HsExplicitListTy x ip <$> renameLTypes ltys
renameType (HsExplicitTupleTy x ltys) =
HsExplicitTupleTy x <$> renameLTypes ltys
renameType t@(HsTyLit _ _) = pure t
renameType (HsWildCardTy wc) = pure (HsWildCardTy wc)
renameLType :: LHsType GhcRn -> Rename (IdP GhcRn) (LHsType GhcRn)
renameLType = located renameType
renameLTypes :: [LHsType GhcRn] -> Rename (IdP GhcRn) [LHsType GhcRn]
renameLTypes = mapM renameLType
renameContext :: HsContext GhcRn -> Rename (IdP GhcRn) (HsContext GhcRn)
renameContext = renameLTypes
renameBinder :: HsTyVarBndr GhcRn -> Rename (IdP GhcRn) (HsTyVarBndr GhcRn)
renameBinder (UserTyVar x lname) = UserTyVar x <$> located renameName lname
renameBinder (KindedTyVar x lname lkind) =
KindedTyVar x <$> located renameName lname <*> located renameType lkind
renameBinder (XTyVarBndr _) = error "haddock:renameBinder"
-- | Core renaming logic.
renameName :: (Eq name, SetName name) => name -> Rename name name
renameName name = do
RenameEnv { .. } <- get
case Map.lookup (getName name) rneCtx of
Nothing
| Just headTv <- Map.lookup (getNameRep name) rneHeadFVs
, headTv /= getName name -> freshName name
Just name' -> return name'
_ -> return name
-- | Generate fresh occurrence name, put it into context and return.
freshName :: SetName name => name -> Rename name name
freshName name = do
taken <- takenNames
let name' = setInternalNameRep (findFreshName taken rep) name
modify $ \rne -> rne
{ rneCtx = Map.insert (getName name) name' (rneCtx rne) }
return name'
where
nname = getName name
rep = getNameRep nname
takenNames :: NamedThing name => Rename name (Set NameRep)
takenNames = do
RenameEnv { .. } <- get
return $ Set.unions [headReps rneHeadFVs, rneSigFVs, ctxElems rneCtx]
where
headReps = Set.fromList . Map.keys
ctxElems = Set.fromList . map getNameRep . Map.elems
findFreshName :: Set NameRep -> NameRep -> NameRep
findFreshName taken =
fromJust . List.find isFresh . alternativeNames
where
isFresh = not . flip Set.member taken
alternativeNames :: NameRep -> [NameRep]
alternativeNames name =
[ stringNameRep $ str ++ show i | i :: Int <- [0..] ]
where
str = nameRepString name
located :: Functor f => (a -> f b) -> Located a -> f (Located b)
located f (L loc e) = L loc <$> f e
tyVarName :: HsTyVarBndr name -> IdP name
tyVarName (UserTyVar _ name) = unLoc name
tyVarName (KindedTyVar _ (L _ name) _) = name
tyVarName (XTyVarBndr _ ) = error "haddock:tyVarName"