diff options
Diffstat (limited to 'haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs')
-rw-r--r-- | haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs b/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs new file mode 100644 index 00000000..d0970d90 --- /dev/null +++ b/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs @@ -0,0 +1,137 @@ +{-# LANGUAGE DeriveDataTypeable #-} +-- | +-- Module : Data.Attoparsec.Number +-- Copyright : Bryan O'Sullivan 2007-2015 +-- License : BSD3 +-- +-- Maintainer : bos@serpentine.com +-- Stability : experimental +-- Portability : unknown +-- +-- This module is deprecated, and both the module and 'Number' type +-- will be removed in the next major release. Use the +-- <http://hackage.haskell.org/package/scientific scientific> package +-- and the 'Data.Scientific.Scientific' type instead. +-- +-- A simple number type, useful for parsing both exact and inexact +-- quantities without losing much precision. +module Data.Attoparsec.Number + {-# DEPRECATED "This module will be removed in the next major release." #-} + ( + Number(..) + ) where + +import Control.DeepSeq (NFData(rnf)) +import Data.Data (Data) +import Data.Function (on) +import Data.Typeable (Typeable) + +-- | A numeric type that can represent integers accurately, and +-- floating point numbers to the precision of a 'Double'. +-- +-- /Note/: this type is deprecated, and will be removed in the next +-- major release. Use the 'Data.Scientific.Scientific' type instead. +data Number = I !Integer + | D {-# UNPACK #-} !Double + deriving (Typeable, Data) +{-# DEPRECATED Number "Use Scientific instead." #-} + +instance Show Number where + show (I a) = show a + show (D a) = show a + +instance NFData Number where + rnf (I _) = () + rnf (D _) = () + {-# INLINE rnf #-} + +binop :: (Integer -> Integer -> a) -> (Double -> Double -> a) + -> Number -> Number -> a +binop _ d (D a) (D b) = d a b +binop i _ (I a) (I b) = i a b +binop _ d (D a) (I b) = d a (fromIntegral b) +binop _ d (I a) (D b) = d (fromIntegral a) b +{-# INLINE binop #-} + +instance Eq Number where + (==) = binop (==) (==) + {-# INLINE (==) #-} + + (/=) = binop (/=) (/=) + {-# INLINE (/=) #-} + +instance Ord Number where + (<) = binop (<) (<) + {-# INLINE (<) #-} + + (<=) = binop (<=) (<=) + {-# INLINE (<=) #-} + + (>) = binop (>) (>) + {-# INLINE (>) #-} + + (>=) = binop (>=) (>=) + {-# INLINE (>=) #-} + + compare = binop compare compare + {-# INLINE compare #-} + +instance Num Number where + (+) = binop (((I$!).) . (+)) (((D$!).) . (+)) + {-# INLINE (+) #-} + + (-) = binop (((I$!).) . (-)) (((D$!).) . (-)) + {-# INLINE (-) #-} + + (*) = binop (((I$!).) . (*)) (((D$!).) . (*)) + {-# INLINE (*) #-} + + abs (I a) = I $! abs a + abs (D a) = D $! abs a + {-# INLINE abs #-} + + negate (I a) = I $! negate a + negate (D a) = D $! negate a + {-# INLINE negate #-} + + signum (I a) = I $! signum a + signum (D a) = D $! signum a + {-# INLINE signum #-} + + fromInteger = (I$!) . fromInteger + {-# INLINE fromInteger #-} + +instance Real Number where + toRational (I a) = fromIntegral a + toRational (D a) = toRational a + {-# INLINE toRational #-} + +instance Fractional Number where + fromRational = (D$!) . fromRational + {-# INLINE fromRational #-} + + (/) = binop (((D$!).) . (/) `on` fromIntegral) + (((D$!).) . (/)) + {-# INLINE (/) #-} + + recip (I a) = D $! recip (fromIntegral a) + recip (D a) = D $! recip a + {-# INLINE recip #-} + +instance RealFrac Number where + properFraction (I a) = (fromIntegral a,0) + properFraction (D a) = case properFraction a of + (i,d) -> (i,D d) + {-# INLINE properFraction #-} + truncate (I a) = fromIntegral a + truncate (D a) = truncate a + {-# INLINE truncate #-} + round (I a) = fromIntegral a + round (D a) = round a + {-# INLINE round #-} + ceiling (I a) = fromIntegral a + ceiling (D a) = ceiling a + {-# INLINE ceiling #-} + floor (I a) = fromIntegral a + floor (D a) = floor a + {-# INLINE floor #-} |