diff options
Diffstat (limited to 'haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs')
-rw-r--r-- | haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs | 137 |
1 files changed, 0 insertions, 137 deletions
diff --git a/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs b/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs deleted file mode 100644 index d0970d90..00000000 --- a/haddock-library/vendor/attoparsec-0.13.1.0/Data/Attoparsec/Number.hs +++ /dev/null @@ -1,137 +0,0 @@ -{-# LANGUAGE DeriveDataTypeable #-} --- | --- Module : Data.Attoparsec.Number --- Copyright : Bryan O'Sullivan 2007-2015 --- License : BSD3 --- --- Maintainer : bos@serpentine.com --- Stability : experimental --- Portability : unknown --- --- This module is deprecated, and both the module and 'Number' type --- will be removed in the next major release. Use the --- <http://hackage.haskell.org/package/scientific scientific> package --- and the 'Data.Scientific.Scientific' type instead. --- --- A simple number type, useful for parsing both exact and inexact --- quantities without losing much precision. -module Data.Attoparsec.Number - {-# DEPRECATED "This module will be removed in the next major release." #-} - ( - Number(..) - ) where - -import Control.DeepSeq (NFData(rnf)) -import Data.Data (Data) -import Data.Function (on) -import Data.Typeable (Typeable) - --- | A numeric type that can represent integers accurately, and --- floating point numbers to the precision of a 'Double'. --- --- /Note/: this type is deprecated, and will be removed in the next --- major release. Use the 'Data.Scientific.Scientific' type instead. -data Number = I !Integer - | D {-# UNPACK #-} !Double - deriving (Typeable, Data) -{-# DEPRECATED Number "Use Scientific instead." #-} - -instance Show Number where - show (I a) = show a - show (D a) = show a - -instance NFData Number where - rnf (I _) = () - rnf (D _) = () - {-# INLINE rnf #-} - -binop :: (Integer -> Integer -> a) -> (Double -> Double -> a) - -> Number -> Number -> a -binop _ d (D a) (D b) = d a b -binop i _ (I a) (I b) = i a b -binop _ d (D a) (I b) = d a (fromIntegral b) -binop _ d (I a) (D b) = d (fromIntegral a) b -{-# INLINE binop #-} - -instance Eq Number where - (==) = binop (==) (==) - {-# INLINE (==) #-} - - (/=) = binop (/=) (/=) - {-# INLINE (/=) #-} - -instance Ord Number where - (<) = binop (<) (<) - {-# INLINE (<) #-} - - (<=) = binop (<=) (<=) - {-# INLINE (<=) #-} - - (>) = binop (>) (>) - {-# INLINE (>) #-} - - (>=) = binop (>=) (>=) - {-# INLINE (>=) #-} - - compare = binop compare compare - {-# INLINE compare #-} - -instance Num Number where - (+) = binop (((I$!).) . (+)) (((D$!).) . (+)) - {-# INLINE (+) #-} - - (-) = binop (((I$!).) . (-)) (((D$!).) . (-)) - {-# INLINE (-) #-} - - (*) = binop (((I$!).) . (*)) (((D$!).) . (*)) - {-# INLINE (*) #-} - - abs (I a) = I $! abs a - abs (D a) = D $! abs a - {-# INLINE abs #-} - - negate (I a) = I $! negate a - negate (D a) = D $! negate a - {-# INLINE negate #-} - - signum (I a) = I $! signum a - signum (D a) = D $! signum a - {-# INLINE signum #-} - - fromInteger = (I$!) . fromInteger - {-# INLINE fromInteger #-} - -instance Real Number where - toRational (I a) = fromIntegral a - toRational (D a) = toRational a - {-# INLINE toRational #-} - -instance Fractional Number where - fromRational = (D$!) . fromRational - {-# INLINE fromRational #-} - - (/) = binop (((D$!).) . (/) `on` fromIntegral) - (((D$!).) . (/)) - {-# INLINE (/) #-} - - recip (I a) = D $! recip (fromIntegral a) - recip (D a) = D $! recip a - {-# INLINE recip #-} - -instance RealFrac Number where - properFraction (I a) = (fromIntegral a,0) - properFraction (D a) = case properFraction a of - (i,d) -> (i,D d) - {-# INLINE properFraction #-} - truncate (I a) = fromIntegral a - truncate (D a) = truncate a - {-# INLINE truncate #-} - round (I a) = fromIntegral a - round (D a) = round a - {-# INLINE round #-} - ceiling (I a) = fromIntegral a - ceiling (D a) = ceiling a - {-# INLINE ceiling #-} - floor (I a) = fromIntegral a - floor (D a) = floor a - {-# INLINE floor #-} |