1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
|
{-# LANGUAGE BangPatterns, StandaloneDeriving, FlexibleInstances, ViewPatterns #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module : Haddock.GhcUtils
-- Copyright : (c) David Waern 2006-2009
-- License : BSD-like
--
-- Maintainer : haddock@projects.haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Utils for dealing with types from the GHC API
-----------------------------------------------------------------------------
module Haddock.GhcUtils where
import Control.Arrow
import Data.Char ( isSpace )
import Data.Maybe ( mapMaybe, fromMaybe )
import Haddock.Types( DocName, DocNameI, XRecCond )
import GHC.Utils.FV as FV
import GHC.Utils.Outputable ( Outputable )
import GHC.Utils.Panic ( panic )
import GHC.Driver.Ppr (showPpr )
import GHC.Types.Name
import GHC.Unit.Module
import GHC
import GHC.Driver.Session
import GHC.Types.Basic
import GHC.Types.SrcLoc ( advanceSrcLoc )
import GHC.Types.Var ( Specificity, VarBndr(..), TyVarBinder
, tyVarKind, updateTyVarKind, isInvisibleArgFlag )
import GHC.Types.Var.Set ( VarSet, emptyVarSet )
import GHC.Types.Var.Env ( TyVarEnv, extendVarEnv, elemVarEnv, emptyVarEnv )
import GHC.Core.TyCo.Rep ( Type(..) )
import GHC.Core.Type ( isRuntimeRepVar )
import GHC.Builtin.Types( liftedRepTy )
import GHC.Data.StringBuffer ( StringBuffer )
import qualified GHC.Data.StringBuffer as S
import Data.ByteString ( ByteString )
import qualified Data.ByteString as BS
import qualified Data.ByteString.Internal as BS
import GHC.HsToCore.Docs
moduleString :: Module -> String
moduleString = moduleNameString . moduleName
isNameSym :: Name -> Bool
isNameSym = isSymOcc . nameOccName
-- Useful when there is a signature with multiple names, e.g.
-- foo, bar :: Types..
-- but only one of the names is exported and we have to change the
-- type signature to only include the exported names.
filterLSigNames :: (IdP (GhcPass p) -> Bool) -> LSig (GhcPass p) -> Maybe (LSig (GhcPass p))
filterLSigNames p (L loc sig) = L loc <$> (filterSigNames p sig)
filterSigNames :: (IdP (GhcPass p) -> Bool) -> Sig (GhcPass p) -> Maybe (Sig (GhcPass p))
filterSigNames p orig@(SpecSig _ n _ _) = ifTrueJust (p $ unLoc n) orig
filterSigNames p orig@(InlineSig _ n _) = ifTrueJust (p $ unLoc n) orig
filterSigNames p (FixSig _ (FixitySig _ ns ty)) =
case filter (p . unLoc) ns of
[] -> Nothing
filtered -> Just (FixSig noAnn (FixitySig noExtField filtered ty))
filterSigNames _ orig@(MinimalSig _ _ _) = Just orig
filterSigNames p (TypeSig _ ns ty) =
case filter (p . unLoc) ns of
[] -> Nothing
filtered -> Just (TypeSig noAnn filtered ty)
filterSigNames p (ClassOpSig _ is_default ns ty) =
case filter (p . unLoc) ns of
[] -> Nothing
filtered -> Just (ClassOpSig noAnn is_default filtered ty)
filterSigNames p (PatSynSig _ ns ty) =
case filter (p . unLoc) ns of
[] -> Nothing
filtered -> Just (PatSynSig noAnn filtered ty)
filterSigNames _ _ = Nothing
ifTrueJust :: Bool -> name -> Maybe name
ifTrueJust True = Just
ifTrueJust False = const Nothing
sigName :: LSig GhcRn -> [IdP GhcRn]
sigName (L _ sig) = sigNameNoLoc sig
-- | Was this signature given by the user?
isUserLSig :: forall p. UnXRec p => LSig p -> Bool
isUserLSig = isUserSig . unXRec @p
isClassD :: HsDecl a -> Bool
isClassD (TyClD _ d) = isClassDecl d
isClassD _ = False
pretty :: Outputable a => DynFlags -> a -> String
pretty = showPpr
-- ---------------------------------------------------------------------
-- These functions are duplicated from the GHC API, as they must be
-- instantiated at DocNameI instead of (GhcPass _).
-- | Like 'hsTyVarName' from GHC API, but not instantiated at (GhcPass _)
hsTyVarBndrName :: forall flag n. (XXTyVarBndr n ~ NoExtCon, UnXRec n)
=> HsTyVarBndr flag n -> IdP n
hsTyVarBndrName (UserTyVar _ _ name) = unXRec @n name
hsTyVarBndrName (KindedTyVar _ _ name _) = unXRec @n name
hsTyVarNameI :: HsTyVarBndr flag DocNameI -> DocName
hsTyVarNameI (UserTyVar _ _ (L _ n)) = n
hsTyVarNameI (KindedTyVar _ _ (L _ n) _) = n
hsLTyVarNameI :: LHsTyVarBndr flag DocNameI -> DocName
hsLTyVarNameI = hsTyVarNameI . unLoc
getConNamesI :: ConDecl DocNameI -> [LocatedN DocName]
getConNamesI ConDeclH98 {con_name = name} = [name]
getConNamesI ConDeclGADT {con_names = names} = names
hsSigTypeI :: LHsSigType DocNameI -> LHsType DocNameI
hsSigTypeI = sig_body . unLoc
mkEmptySigType :: LHsType GhcRn -> LHsSigType GhcRn
-- Dubious, because the implicit binders are empty even
-- though the type might have free varaiables
mkEmptySigType lty@(L loc ty) = L loc $ case ty of
HsForAllTy { hst_tele = HsForAllInvis { hsf_invis_bndrs = bndrs }
, hst_body = body }
-> HsSig { sig_ext = noExtField
, sig_bndrs = HsOuterExplicit { hso_xexplicit = noExtField
, hso_bndrs = bndrs }
, sig_body = body }
_ -> HsSig { sig_ext = noExtField
, sig_bndrs = HsOuterImplicit{hso_ximplicit = []}
, sig_body = lty }
mkHsForAllInvisTeleI ::
[LHsTyVarBndr Specificity DocNameI] -> HsForAllTelescope DocNameI
mkHsForAllInvisTeleI invis_bndrs =
HsForAllInvis { hsf_xinvis = noExtField, hsf_invis_bndrs = invis_bndrs }
mkHsImplicitSigTypeI :: LHsType DocNameI -> HsSigType DocNameI
mkHsImplicitSigTypeI body =
HsSig { sig_ext = noExtField
, sig_bndrs = HsOuterImplicit{hso_ximplicit = noExtField}
, sig_body = body }
getGADTConType :: ConDecl DocNameI -> LHsSigType DocNameI
-- The full type of a GADT data constructor We really only get this in
-- order to pretty-print it, and currently only in Haddock's code. So
-- we are cavalier about locations and extensions, hence the
-- 'undefined's
getGADTConType (ConDeclGADT { con_bndrs = L _ outer_bndrs
, con_mb_cxt = mcxt, con_g_args = args
, con_res_ty = res_ty })
= noLocA (HsSig { sig_ext = noExtField
, sig_bndrs = outer_bndrs
, sig_body = theta_ty })
where
theta_ty | Just theta <- mcxt
= noLocA (HsQualTy { hst_xqual = noAnn, hst_ctxt = theta, hst_body = tau_ty })
| otherwise
= tau_ty
-- tau_ty :: LHsType DocNameI
tau_ty = case args of
RecConGADT flds _ -> mkFunTy (noLocA (HsRecTy noAnn (unLoc flds))) res_ty
PrefixConGADT pos_args -> foldr mkFunTy res_ty (map hsScaledThing pos_args)
mkFunTy :: LHsType DocNameI -> LHsType DocNameI -> LHsType DocNameI
mkFunTy a b = noLocA (HsFunTy noAnn (HsUnrestrictedArrow noHsUniTok) a b)
getGADTConType (ConDeclH98 {}) = panic "getGADTConType"
-- Should only be called on ConDeclGADT
getMainDeclBinderI :: HsDecl DocNameI -> [IdP DocNameI]
getMainDeclBinderI (TyClD _ d) = [tcdNameI d]
getMainDeclBinderI (ValD _ d) =
case collectHsBindBinders CollNoDictBinders d of
[] -> []
(name:_) -> [name]
getMainDeclBinderI (SigD _ d) = sigNameNoLoc d
getMainDeclBinderI (ForD _ (ForeignImport _ name _ _)) = [unLoc name]
getMainDeclBinderI (ForD _ (ForeignExport _ _ _ _)) = []
getMainDeclBinderI _ = []
familyDeclLNameI :: FamilyDecl DocNameI -> LocatedN DocName
familyDeclLNameI (FamilyDecl { fdLName = n }) = n
tyClDeclLNameI :: TyClDecl DocNameI -> LocatedN DocName
tyClDeclLNameI (FamDecl { tcdFam = fd }) = familyDeclLNameI fd
tyClDeclLNameI (SynDecl { tcdLName = ln }) = ln
tyClDeclLNameI (DataDecl { tcdLName = ln }) = ln
tyClDeclLNameI (ClassDecl { tcdLName = ln }) = ln
tcdNameI :: TyClDecl DocNameI -> DocName
tcdNameI = unLoc . tyClDeclLNameI
addClassContext :: Name -> LHsQTyVars GhcRn -> LSig GhcRn -> LSig GhcRn
-- Add the class context to a class-op signature
addClassContext cls tvs0 (L pos (ClassOpSig _ _ lname ltype))
= L pos (TypeSig noAnn lname (mkEmptyWildCardBndrs (go_sig_ty ltype)))
where
go_sig_ty (L loc (HsSig { sig_bndrs = bndrs, sig_body = ty }))
= L loc (HsSig { sig_ext = noExtField
, sig_bndrs = bndrs, sig_body = go_ty ty })
go_ty (L loc (HsForAllTy { hst_tele = tele, hst_body = ty }))
= L loc (HsForAllTy { hst_xforall = noExtField
, hst_tele = tele, hst_body = go_ty ty })
go_ty (L loc (HsQualTy { hst_ctxt = ctxt, hst_body = ty }))
= L loc (HsQualTy { hst_xqual = noExtField
, hst_ctxt = add_ctxt ctxt, hst_body = ty })
go_ty (L loc ty)
= L loc (HsQualTy { hst_xqual = noExtField
, hst_ctxt = add_ctxt (noLocA []), hst_body = L loc ty })
extra_pred = nlHsTyConApp Prefix cls (lHsQTyVarsToTypes tvs0)
add_ctxt (L loc preds) = L loc (extra_pred : preds)
addClassContext _ _ sig = sig -- E.g. a MinimalSig is fine
lHsQTyVarsToTypes :: LHsQTyVars GhcRn -> [LHsTypeArg GhcRn]
lHsQTyVarsToTypes tvs
= [ HsValArg $ noLocA (HsTyVar noAnn NotPromoted (noLocA (hsLTyVarName tv)))
| tv <- hsQTvExplicit tvs ]
--------------------------------------------------------------------------------
-- * Making abstract declarations
--------------------------------------------------------------------------------
restrictTo :: [Name] -> LHsDecl GhcRn -> LHsDecl GhcRn
restrictTo names (L loc decl) = L loc $ case decl of
TyClD x d | isDataDecl d ->
TyClD x (d { tcdDataDefn = restrictDataDefn names (tcdDataDefn d) })
TyClD x d | isClassDecl d ->
TyClD x (d { tcdSigs = restrictDecls names (tcdSigs d),
tcdATs = restrictATs names (tcdATs d) })
_ -> decl
restrictDataDefn :: [Name] -> HsDataDefn GhcRn -> HsDataDefn GhcRn
restrictDataDefn names defn@(HsDataDefn { dd_ND = new_or_data, dd_cons = cons })
| DataType <- new_or_data
= defn { dd_cons = restrictCons names cons }
| otherwise -- Newtype
= case restrictCons names cons of
[] -> defn { dd_ND = DataType, dd_cons = [] }
[con] -> defn { dd_cons = [con] }
_ -> error "Should not happen"
restrictCons :: [Name] -> [LConDecl GhcRn] -> [LConDecl GhcRn]
restrictCons names decls = [ L p d | L p (Just d) <- map (fmap keep) decls ]
where
keep :: ConDecl GhcRn -> Maybe (ConDecl GhcRn)
keep d
| any (\n -> n `elem` names) (map unLoc $ getConNames d) =
case d of
ConDeclH98 { con_args = con_args' } -> case con_args' of
PrefixCon {} -> Just d
RecCon fields
| all field_avail (unLoc fields) -> Just d
| otherwise -> Just (d { con_args = PrefixCon [] (field_types $ unLoc fields) })
-- if we have *all* the field names available, then
-- keep the record declaration. Otherwise degrade to
-- a constructor declaration. This isn't quite right, but
-- it's the best we can do.
InfixCon _ _ -> Just d
ConDeclGADT { con_g_args = con_args' } -> case con_args' of
PrefixConGADT {} -> Just d
RecConGADT fields _
| all field_avail (unLoc fields) -> Just d
| otherwise -> Just (d { con_g_args = PrefixConGADT (field_types $ unLoc fields) })
-- see above
where
field_avail :: LConDeclField GhcRn -> Bool
field_avail (L _ (ConDeclField _ fs _ _))
= all (\f -> foExt (unLoc f) `elem` names) fs
field_types flds = [ hsUnrestricted t | L _ (ConDeclField _ _ t _) <- flds ]
keep _ = Nothing
restrictDecls :: [Name] -> [LSig GhcRn] -> [LSig GhcRn]
restrictDecls names = mapMaybe (filterLSigNames (`elem` names))
restrictATs :: [Name] -> [LFamilyDecl GhcRn] -> [LFamilyDecl GhcRn]
restrictATs names ats = [ at | at <- ats , unLoc (fdLName (unLoc at)) `elem` names ]
-------------------------------------------------------------------------------
-- * Parenthesization
-------------------------------------------------------------------------------
-- | Precedence level (inside the 'HsType' AST).
data Precedence
= PREC_TOP -- ^ precedence of 'type' production in GHC's parser
| PREC_SIG -- ^ explicit type signature
| PREC_CTX -- ^ Used for single contexts, eg. ctx => type
-- (as opposed to (ctx1, ctx2) => type)
| PREC_FUN -- ^ precedence of 'btype' production in GHC's parser
-- (used for LH arg of (->))
| PREC_OP -- ^ arg of any infix operator
-- (we don't keep have fixity info)
| PREC_CON -- ^ arg of type application: always parenthesize unless atomic
deriving (Eq, Ord)
-- | Add in extra 'HsParTy' where needed to ensure that what would be printed
-- out using 'ppr' has enough parentheses to be re-parsed properly.
--
-- We cannot add parens that may be required by fixities because we do not have
-- any fixity information to work with in the first place :(.
reparenTypePrec :: forall a. (XRecCond a)
=> Precedence -> HsType a -> HsType a
reparenTypePrec = go
where
-- Shorter name for 'reparenType'
go :: XParTy a ~ EpAnn AnnParen => Precedence -> HsType a -> HsType a
go _ (HsBangTy x b ty) = HsBangTy x b (reparenLType ty)
go _ (HsTupleTy x con tys) = HsTupleTy x con (map reparenLType tys)
go _ (HsSumTy x tys) = HsSumTy x (map reparenLType tys)
go _ (HsListTy x ty) = HsListTy x (reparenLType ty)
go _ (HsRecTy x flds) = HsRecTy x (map (mapXRec @a reparenConDeclField) flds)
go p (HsDocTy x ty d) = HsDocTy x (goL p ty) d
go _ (HsExplicitListTy x p tys) = HsExplicitListTy x p (map reparenLType tys)
go _ (HsExplicitTupleTy x tys) = HsExplicitTupleTy x (map reparenLType tys)
go p (HsKindSig x ty kind)
= paren p PREC_SIG $ HsKindSig x (goL PREC_SIG ty) (goL PREC_SIG kind)
go p (HsIParamTy x n ty)
= paren p PREC_SIG $ HsIParamTy x n (reparenLType ty)
go p (HsForAllTy x tele ty)
= paren p PREC_CTX $ HsForAllTy x (reparenHsForAllTelescope tele) (reparenLType ty)
go p (HsQualTy x ctxt ty)
= let p' [_] = PREC_CTX
p' _ = PREC_TOP -- parens will get added anyways later...
ctxt' = mapXRec @a (\xs -> map (goL (p' xs)) xs) ctxt
in paren p PREC_CTX $ HsQualTy x ctxt' (goL PREC_TOP ty)
-- = paren p PREC_FUN $ HsQualTy x (fmap (mapXRec @a (map reparenLType)) ctxt) (reparenLType ty)
go p (HsFunTy x w ty1 ty2)
= paren p PREC_FUN $ HsFunTy x w (goL PREC_FUN ty1) (goL PREC_TOP ty2)
go p (HsAppTy x fun_ty arg_ty)
= paren p PREC_CON $ HsAppTy x (goL PREC_FUN fun_ty) (goL PREC_CON arg_ty)
go p (HsAppKindTy x fun_ty arg_ki)
= paren p PREC_CON $ HsAppKindTy x (goL PREC_FUN fun_ty) (goL PREC_CON arg_ki)
go p (HsOpTy x ty1 op ty2)
= paren p PREC_FUN $ HsOpTy x (goL PREC_OP ty1) op (goL PREC_OP ty2)
go p (HsParTy _ t) = unXRec @a $ goL p t -- pretend the paren doesn't exist - it will be added back if needed
go _ t@HsTyVar{} = t
go _ t@HsStarTy{} = t
go _ t@HsSpliceTy{} = t
go _ t@HsTyLit{} = t
go _ t@HsWildCardTy{} = t
go _ t@XHsType{} = t
-- Located variant of 'go'
goL :: XParTy a ~ EpAnn AnnParen => Precedence -> LHsType a -> LHsType a
goL ctxt_prec = mapXRec @a (go ctxt_prec)
-- Optionally wrap a type in parens
paren :: XParTy a ~ EpAnn AnnParen
=> Precedence -- Precedence of context
-> Precedence -- Precedence of top-level operator
-> HsType a -> HsType a -- Wrap in parens if (ctxt >= op)
paren ctxt_prec op_prec | ctxt_prec >= op_prec = HsParTy noAnn . wrapXRec @a
| otherwise = id
-- | Add parenthesis around the types in a 'HsType' (see 'reparenTypePrec')
reparenType :: XRecCond a => HsType a -> HsType a
reparenType = reparenTypePrec PREC_TOP
-- | Add parenthesis around the types in a 'LHsType' (see 'reparenTypePrec')
reparenLType :: forall a. (XRecCond a) => LHsType a -> LHsType a
reparenLType = mapXRec @a reparenType
-- | Add parentheses around the types in an 'HsSigType' (see 'reparenTypePrec')
reparenSigType :: forall a. ( XRecCond a )
=> HsSigType a -> HsSigType a
reparenSigType (HsSig x bndrs body) =
HsSig x (reparenOuterTyVarBndrs bndrs) (reparenLType body)
reparenSigType v@XHsSigType{} = v
-- | Add parentheses around the types in an 'HsOuterTyVarBndrs' (see 'reparenTypePrec')
reparenOuterTyVarBndrs :: forall flag a. ( XRecCond a )
=> HsOuterTyVarBndrs flag a -> HsOuterTyVarBndrs flag a
reparenOuterTyVarBndrs imp@HsOuterImplicit{} = imp
reparenOuterTyVarBndrs (HsOuterExplicit x exp_bndrs) =
HsOuterExplicit x (map (mapXRec @(NoGhcTc a) reparenTyVar) exp_bndrs)
reparenOuterTyVarBndrs v@XHsOuterTyVarBndrs{} = v
-- | Add parentheses around the types in an 'HsForAllTelescope' (see 'reparenTypePrec')
reparenHsForAllTelescope :: forall a. (XRecCond a )
=> HsForAllTelescope a -> HsForAllTelescope a
reparenHsForAllTelescope (HsForAllVis x bndrs) =
HsForAllVis x (map (mapXRec @a reparenTyVar) bndrs)
reparenHsForAllTelescope (HsForAllInvis x bndrs) =
HsForAllInvis x (map (mapXRec @a reparenTyVar) bndrs)
reparenHsForAllTelescope v@XHsForAllTelescope{} = v
-- | Add parenthesis around the types in a 'HsTyVarBndr' (see 'reparenTypePrec')
reparenTyVar :: (XRecCond a) => HsTyVarBndr flag a -> HsTyVarBndr flag a
reparenTyVar (UserTyVar x flag n) = UserTyVar x flag n
reparenTyVar (KindedTyVar x flag n kind) = KindedTyVar x flag n (reparenLType kind)
reparenTyVar v@XTyVarBndr{} = v
-- | Add parenthesis around the types in a 'ConDeclField' (see 'reparenTypePrec')
reparenConDeclField :: (XRecCond a) => ConDeclField a -> ConDeclField a
reparenConDeclField (ConDeclField x n t d) = ConDeclField x n (reparenLType t) d
reparenConDeclField c@XConDeclField{} = c
-------------------------------------------------------------------------------
-- * Located
-------------------------------------------------------------------------------
unL :: GenLocated l a -> a
unL (L _ x) = x
reL :: a -> GenLocated l a
reL = L undefined
mapMA :: Monad m => (a -> m b) -> LocatedAn an a -> m (Located b)
mapMA f (L al a) = L (locA al) <$> f a
-------------------------------------------------------------------------------
-- * NamedThing instances
-------------------------------------------------------------------------------
instance NamedThing (TyClDecl GhcRn) where
getName = tcdName
-------------------------------------------------------------------------------
-- * Subordinates
-------------------------------------------------------------------------------
class Parent a where
children :: a -> [Name]
instance Parent (ConDecl GhcRn) where
children con =
case getRecConArgs_maybe con of
Nothing -> []
Just flds -> map (foExt . unLoc) $ concatMap (cd_fld_names . unLoc) (unLoc flds)
instance Parent (TyClDecl GhcRn) where
children d
| isDataDecl d = map unLoc $ concatMap (getConNames . unLoc)
$ (dd_cons . tcdDataDefn) $ d
| isClassDecl d =
map (unLoc . fdLName . unLoc) (tcdATs d) ++
[ unLoc n | L _ (TypeSig _ ns _) <- tcdSigs d, n <- ns ]
| otherwise = []
-- | A parent and its children
family :: (NamedThing a, Parent a) => a -> (Name, [Name])
family = getName &&& children
familyConDecl :: ConDecl GHC.GhcRn -> [(Name, [Name])]
familyConDecl d = zip (map unLoc (getConNames d)) (repeat $ children d)
-- | A mapping from the parent (main-binder) to its children and from each
-- child to its grand-children, recursively.
families :: TyClDecl GhcRn -> [(Name, [Name])]
families d
| isDataDecl d = family d : concatMap (familyConDecl . unLoc) (dd_cons (tcdDataDefn d))
| isClassDecl d = [family d]
| otherwise = []
-- | A mapping from child to parent
parentMap :: TyClDecl GhcRn -> [(Name, Name)]
parentMap d = [ (c, p) | (p, cs) <- families d, c <- cs ]
-- | The parents of a subordinate in a declaration
parents :: Name -> HsDecl GhcRn -> [Name]
parents n (TyClD _ d) = [ p | (c, p) <- parentMap d, c == n ]
parents _ _ = []
-------------------------------------------------------------------------------
-- * Utils that work in monads defined by GHC
-------------------------------------------------------------------------------
modifySessionDynFlags :: (DynFlags -> DynFlags) -> Ghc ()
modifySessionDynFlags f = do
dflags <- getSessionDynFlags
_ <- setSessionDynFlags (f dflags)
return ()
-------------------------------------------------------------------------------
-- * DynFlags
-------------------------------------------------------------------------------
-- TODO: use `setOutputDir` from GHC
setOutputDir :: FilePath -> DynFlags -> DynFlags
setOutputDir dir dynFlags =
dynFlags { objectDir = Just dir
, hiDir = Just dir
, hieDir = Just dir
, stubDir = Just dir
, includePaths = addGlobalInclude (includePaths dynFlags) [dir]
, dumpDir = Just dir
}
-------------------------------------------------------------------------------
-- * 'StringBuffer' and 'ByteString'
-------------------------------------------------------------------------------
-- We get away with a bunch of these functions because 'StringBuffer' and
-- 'ByteString' have almost exactly the same structure.
-- | Convert a UTF-8 encoded 'ByteString' into a 'StringBuffer. This really
-- relies on the internals of both 'ByteString' and 'StringBuffer'.
--
-- /O(n)/ (but optimized into a @memcpy@ by @bytestring@ under the hood)
stringBufferFromByteString :: ByteString -> StringBuffer
stringBufferFromByteString bs =
let BS.PS fp off len = bs <> BS.pack [0,0,0]
in S.StringBuffer { S.buf = fp, S.len = len - 3, S.cur = off }
-- | Take the first @n@ /bytes/ of the 'StringBuffer' and put them in a
-- 'ByteString'.
--
-- /O(1)/
takeStringBuffer :: Int -> StringBuffer -> ByteString
takeStringBuffer !n !(S.StringBuffer fp _ cur) = BS.PS fp cur n
-- | Return the prefix of the first 'StringBuffer' that /isn't/ in the second
-- 'StringBuffer'. **The behavior is undefined if the 'StringBuffers' use
-- separate buffers.**
--
-- /O(1)/
splitStringBuffer :: StringBuffer -> StringBuffer -> ByteString
splitStringBuffer buf1 buf2 = takeStringBuffer n buf1
where n = S.byteDiff buf1 buf2
-- | Split the 'StringBuffer' at the next newline (or the end of the buffer).
-- Also: initial position is passed in and the updated position is returned.
--
-- /O(n)/ (but /O(1)/ space)
spanLine :: RealSrcLoc -> StringBuffer -> (ByteString, RealSrcLoc, StringBuffer)
spanLine !loc !buf = go loc buf
where
go !l !b
| not (S.atEnd b)
= case S.nextChar b of
('\n', b') -> (splitStringBuffer buf b', advanceSrcLoc l '\n', b')
(c, b') -> go (advanceSrcLoc l c) b'
| otherwise
= (splitStringBuffer buf b, advanceSrcLoc l '\n', b)
-- | Given a start position and a buffer with that start position, split the
-- buffer at an end position.
--
-- /O(n)/ (but /O(1)/ space)
spanPosition :: RealSrcLoc -- ^ start of buffeer
-> RealSrcLoc -- ^ position until which to take
-> StringBuffer -- ^ buffer from which to take
-> (ByteString, StringBuffer)
spanPosition !start !end !buf = go start buf
where
go !l !b
| l < end
, not (S.atEnd b)
, (c, b') <- S.nextChar b
= go (advanceSrcLoc l c) b'
| otherwise
= (splitStringBuffer buf b, b)
-- | Try to parse a line of CPP from the from of the buffer. A \"line\" of CPP
-- consists of
--
-- * at most 10 whitespace characters, including at least one newline
-- * a @#@ character
-- * keep parsing lines until you find a line not ending in @\\@.
--
-- This is chock full of heuristics about what a line of CPP is.
--
-- /O(n)/ (but /O(1)/ space)
tryCppLine :: RealSrcLoc -> StringBuffer -> Maybe (ByteString, RealSrcLoc, StringBuffer)
tryCppLine !loc !buf = spanSpace (S.prevChar buf '\n' == '\n') loc buf
where
-- Keep consuming space characters until we hit either a @#@ or something
-- else. If we hit a @#@, start parsing CPP
spanSpace !seenNl !l !b
| S.atEnd b
= Nothing
| otherwise
= case S.nextChar b of
('#' , b') | not (S.atEnd b')
, ('-', b'') <- S.nextChar b'
, ('}', _) <- S.nextChar b''
-> Nothing -- Edge case exception for @#-}@
| seenNl
-> Just (spanCppLine (advanceSrcLoc l '#') b') -- parse CPP
| otherwise
-> Nothing -- We didn't see a newline, so this can't be CPP!
(c , b') | isSpace c -> spanSpace (seenNl || c == '\n')
(advanceSrcLoc l c) b'
| otherwise -> Nothing
-- Consume a CPP line to its "end" (basically the first line that ends not
-- with a @\@ character)
spanCppLine !l !b
| S.atEnd b
= (splitStringBuffer buf b, l, b)
| otherwise
= case S.nextChar b of
('\\', b') | not (S.atEnd b')
, ('\n', b'') <- S.nextChar b'
-> spanCppLine (advanceSrcLoc (advanceSrcLoc l '\\') '\n') b''
('\n', b') -> (splitStringBuffer buf b', advanceSrcLoc l '\n', b')
(c , b') -> spanCppLine (advanceSrcLoc l c) b'
-------------------------------------------------------------------------------
-- * Free variables of a 'Type'
-------------------------------------------------------------------------------
-- | Get free type variables in a 'Type' in their order of appearance.
-- See [Ordering of implicit variables].
orderedFVs
:: VarSet -- ^ free variables to ignore
-> [Type] -- ^ types to traverse (in order) looking for free variables
-> [TyVar] -- ^ free type variables, in the order they appear in
orderedFVs vs tys =
reverse . fst $ tyCoFVsOfTypes' tys (const True) vs ([], emptyVarSet)
-- See the "Free variables of types and coercions" section in 'TyCoRep', or
-- check out Note [Free variables of types]. The functions in this section
-- don't output type variables in the order they first appear in in the 'Type'.
--
-- For example, 'tyCoVarsOfTypeList' reports an incorrect order for the type
-- of 'const :: a -> b -> a':
--
-- >>> import GHC.Types.Name
-- >>> import TyCoRep
-- >>> import GHC.Builtin.Types.Prim
-- >>> import GHC.Types.Var
-- >>> a = TyVarTy alphaTyVar
-- >>> b = TyVarTy betaTyVar
-- >>> constTy = mkFunTys [a, b] a
-- >>> map (getOccString . tyVarName) (tyCoVarsOfTypeList constTy)
-- ["b","a"]
--
-- However, we want to reuse the very optimized traversal machinery there, so
-- so we make our own `tyCoFVsOfType'`, `tyCoFVsBndr'`, and `tyCoVarsOfTypes'`.
-- All these do differently is traverse in a different order and ignore
-- coercion variables.
-- | Just like 'tyCoFVsOfType', but traverses type variables in reverse order
-- of appearance.
tyCoFVsOfType' :: Type -> FV
tyCoFVsOfType' (TyVarTy v) a b c = (FV.unitFV v `unionFV` tyCoFVsOfType' (tyVarKind v)) a b c
tyCoFVsOfType' (TyConApp _ tys) a b c = tyCoFVsOfTypes' tys a b c
tyCoFVsOfType' (LitTy {}) a b c = emptyFV a b c
tyCoFVsOfType' (AppTy fun arg) a b c = (tyCoFVsOfType' arg `unionFV` tyCoFVsOfType' fun) a b c
tyCoFVsOfType' (FunTy _ w arg res) a b c = (tyCoFVsOfType' w `unionFV`
tyCoFVsOfType' res `unionFV`
tyCoFVsOfType' arg) a b c
tyCoFVsOfType' (ForAllTy bndr ty) a b c = tyCoFVsBndr' bndr (tyCoFVsOfType' ty) a b c
tyCoFVsOfType' (CastTy ty _) a b c = (tyCoFVsOfType' ty) a b c
tyCoFVsOfType' (CoercionTy _ ) a b c = emptyFV a b c
-- | Just like 'tyCoFVsOfTypes', but traverses type variables in reverse order
-- of appearance.
tyCoFVsOfTypes' :: [Type] -> FV
tyCoFVsOfTypes' (ty:tys) fv_cand in_scope acc = (tyCoFVsOfTypes' tys `unionFV` tyCoFVsOfType' ty) fv_cand in_scope acc
tyCoFVsOfTypes' [] fv_cand in_scope acc = emptyFV fv_cand in_scope acc
-- | Just like 'tyCoFVsBndr', but traverses type variables in reverse order of
-- appearance.
tyCoFVsBndr' :: TyVarBinder -> FV -> FV
tyCoFVsBndr' (Bndr tv _) fvs = FV.delFV tv fvs `unionFV` tyCoFVsOfType' (tyVarKind tv)
-------------------------------------------------------------------------------
-- * Defaulting RuntimeRep variables
-------------------------------------------------------------------------------
-- | Traverses the type, defaulting type variables of kind 'RuntimeRep' to
-- 'LiftedType'. See 'defaultRuntimeRepVars' in GHC.Iface.Type the original such
-- function working over `IfaceType`'s.
defaultRuntimeRepVars :: Type -> Type
defaultRuntimeRepVars = go emptyVarEnv
where
go :: TyVarEnv () -> Type -> Type
go subs (ForAllTy (Bndr var flg) ty)
| isRuntimeRepVar var
, isInvisibleArgFlag flg
= let subs' = extendVarEnv subs var ()
in go subs' ty
| otherwise
= ForAllTy (Bndr (updateTyVarKind (go subs) var) flg)
(go subs ty)
go subs (TyVarTy tv)
| tv `elemVarEnv` subs
= liftedRepTy
| otherwise
= TyVarTy (updateTyVarKind (go subs) tv)
go subs (TyConApp tc tc_args)
= TyConApp tc (map (go subs) tc_args)
go subs (FunTy af w arg res)
= FunTy af (go subs w) (go subs arg) (go subs res)
go subs (AppTy t u)
= AppTy (go subs t) (go subs u)
go subs (CastTy x co)
= CastTy (go subs x) co
go _ ty@(LitTy {}) = ty
go _ ty@(CoercionTy {}) = ty
fromMaybeContext :: Maybe (LHsContext DocNameI) -> HsContext DocNameI
fromMaybeContext mctxt = unLoc $ fromMaybe (noLocA []) mctxt
|