aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--Math/Combinatorics/PitmanTransform.hs48
-rw-r--r--Math/Combinatorics/RootSystem.hs5
3 files changed, 47 insertions, 7 deletions
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..1377554
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1 @@
+*.swp
diff --git a/Math/Combinatorics/PitmanTransform.hs b/Math/Combinatorics/PitmanTransform.hs
index 0379bce..fa979d7 100644
--- a/Math/Combinatorics/PitmanTransform.hs
+++ b/Math/Combinatorics/PitmanTransform.hs
@@ -12,15 +12,20 @@
import RootSystem hiding (s)
import YoungTableaux
import RobinsonSchensted
-import Math.Algebra.Field.Base (Q)-- for Q
+--import Math.Algebra.Field.Base (Q)-- for Q
import Math.Algebra.LinearAlgebra
import Prelude hiding ( (*>), Word )
import Test.QuickCheck
import qualified Data.List as L
+import Data.Ratio
--pitman :: (Fractional a, Ord a) => Type -> Int -> [a] -> [a]
pitman :: Type -> Int -> [[Q]] -> [[Q]]
-pitman t n xs = foldr s xs (longestElement $ simpleSystem t n)
+pitman t n xs = tail $ foldr s (prependWithZero xs) (longestElement $ simpleSystem t n)
+
+prependWithZero :: [[Q]] -> [[Q]]
+prependWithZero [] = []
+prependWithZero xs = (replicate (length $ head xs) 0) : xs
s :: [Q] -> [[Q]] -> [[Q]]
--s :: (Fractional a, Ord a) => [a] -> [a] -> [a]
@@ -35,7 +40,8 @@ cumSum = scanl1 (+)
word2Path :: Word Int -> [[Q]]
word2Path (W []) = []
-word2Path (W xs) = L.transpose $ cumSum <$> [0:(indicator (==k) xs) | k <- [1..maximum xs]]
+--word2Path (W xs) = L.transpose $ cumSum <$> [0:(indicator (==k) xs) | k <- [1..maximum xs]]
+word2Path (W xs) = L.transpose $ cumSum <$> [indicator (==k) xs | k <- [1..maximum xs]]
indicator :: (a -> Bool) -> [a] -> [Q]
indicator f xs = (\x -> if f x then 1 else 0) <$> xs
@@ -68,9 +74,41 @@ prop_Pitman_RobinsonSchensted_sanitise :: [Int] -> Word Int
prop_Pitman_RobinsonSchensted_sanitise = W . (fmap (\t -> abs t + 1))
+smallRational :: Gen Q
+smallRational = do
+ x <- smallInt
+ y <- smallInt
+ return $ (toInteger x) % (toInteger (abs y + 1)) -- this line does not work if
+ --return $ (toInteger x) / (toInteger (abs y + 1)) -- this line does not work for Q = Math.Algebra.Field.Base.Q - Couldn't match type ‘Integer’ with ‘Q’
+
+
+--smallRational :: Gen Q
+--smallRational = getSmall <$> (arbitrary :: Gen (Small Q))
+
+--mediumInt :: Gen Int
+--mediumInt = do
+ --x <- smallInt
+ --y <- smallInt
+ --return $ x * y
+
+
+smallInt :: Gen Int
+smallInt = getSmall <$> (arbitrary :: Gen (Small Int))
+
+arbRational :: Gen Q
+arbRational = arbitrary
+
randomQMatrix :: Int -> Gen [[Q]]
-randomQMatrix n = vectorOf 20 (vector n)
+randomQMatrix n = vectorOf 20 $ vectorOf n smallRational
prop_Pitman_WeylChamber :: Int -> Property
prop_Pitman_WeylChamber m = let (t, n) = int2TypeInt m in
- forAll (randomQMatrix $ dimensionOfHostSpace t n) (\xs -> isInWeylChamber $ pitman t n xs)
+ forAll (randomQMatrix $ dimensionOfHostSpace t n) (\xs -> isInWeylChamber (simpleSystem t n) (last $ pitman t n xs))
+
+prop_PitmanA_WeylChamber :: Int -> Property
+prop_PitmanA_WeylChamber n = let m = (n `mod` 2) + 1 in
+ forAll (randomQMatrix $ m + 1) (\xs -> isInWeylChamber (simpleSystem A m) (last $ pitman A m xs))
+
+--prop_PitmanA_WeylChamber :: Property
+--prop_PitmanA_WeylChamber = let m = (1 `mod` 2) + 1 in
+ --forAll (randomQMatrix $ m + 1) (\xs -> isInWeylChamber (simpleSystem A m) (last $ pitman A m xs))
diff --git a/Math/Combinatorics/RootSystem.hs b/Math/Combinatorics/RootSystem.hs
index f92b642..a1674b7 100644
--- a/Math/Combinatorics/RootSystem.hs
+++ b/Math/Combinatorics/RootSystem.hs
@@ -13,12 +13,13 @@ import Data.Maybe
import qualified Data.Set as S
import Math.Algebra.LinearAlgebra
-import Math.Algebra.Group.PermutationGroup hiding (elts, order, closure)
+--import Math.Algebra.Group.PermutationGroup hiding (elts, order, closure)
--import Math.Algebra.Group.SchreierSims as SS
--import Math.Algebra.Group.StringRewriting as SG
-import Math.Algebra.Field.Base (Q)-- for Q
+--import Math.Algebra.Field.Base (Q)-- for Q
+type Q = Rational
data Type = A | B | C | D | E | F | G deriving Show
type SimpleSystem = [[Q]]