1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
#!/usr/bin/env node
/**
* Remove duplicates (exact tags) at the same location or within a small proximity.
*/
const fs = require('fs')
const { Readable, Transform, pipeline } = require('stream')
const ndjson = require('ndjson')
const cluster = require('../lib/cluster.js')
const cloneDeep = require('clone-deep')
const xml = require('xml-js')
const _ = require('lodash')
const argv = require('yargs/yargs')(process.argv.slice(2))
.option('debug', {
type: 'boolean',
description: 'Dumps full debug logs'
})
.argv
if (argv._.length < 2) {
console.error("Usage: ./reduceDuplicates.js input.geojson output.geojson")
process.exit(1)
}
const inputFile = argv._[0]
const outputFile = argv._[1]
if (!fs.existsSync(inputFile)) {
console.error(`${inputFile} not found`)
process.exit(1)
}
let sourceCount = 0
const features = {}
// index features by properties
const index = new Transform({
readableObjectMode: true,
writableObjectMode: true,
transform(feature, encoding, callback) {
sourceCount++
if (process.stdout.isTTY && sourceCount % 10000 === 0) {
process.stdout.write(` ${sourceCount.toLocaleString()}\r`)
}
const key = [
feature.properties['addr:unit'],
feature.properties['addr:housenumber'],
feature.properties['addr:street'],
feature.properties['addr:suburb'],
feature.properties['addr:state'],
feature.properties['addr:postcode']
].join('/')
if (!(key in features)) {
features[key] = []
}
features[key].push(feature)
callback()
}
})
// remove duplicates
let reduceIndex = 0
const reduce = new Transform({
readableObjectMode: true,
writableObjectMode: true,
transform(key, encoding, callback) {
reduceIndex++
if (process.stdout.isTTY && reduceIndex % 10000 === 0) {
process.stdout.write(` ${reduceIndex.toLocaleString()} / ${sourceCount.toLocaleString()} (${Math.round(reduceIndex / sourceCount * 100)}%)\r`)
}
// groupedFeatures is a list of features which all shared the same attributes, these may or may not share the same geometry
const groupedFeatures = features[key]
if (groupedFeatures.length === 1) {
// address not duplicated, pass through as unique
this.push(groupedFeatures[0])
} else {
// address appears multiple times
const sameCoordinates = [...new Set(groupedFeatures.map(f => f.geometry.coordinates.join(',')))].length <= 1
if (sameCoordinates) {
// features have same properties and same geometry, so they are true duplicates which can safely be reduced to one
this.push(groupedFeatures[0])
if (argv.debug) {
for (const feature of groupedFeatures.slice(1)) {
debugStreams.droppedSameCoordinates.write(feature)
}
}
} else {
// features have same properties but not all with the same geometry
// cluster features with a threshold of 25m
const clusters = cluster(groupedFeatures, 25)
// if clustered into a single cluster, then output a single average feature
// this should be safe to use as within 25m
if (clusters.length === 1) {
const averageCoordinates = [
groupedFeatures.map(f => f.geometry.coordinates[0]).reduce((acc, cur) => acc + cur) / groupedFeatures.length,
groupedFeatures.map(f => f.geometry.coordinates[1]).reduce((acc, cur) => acc + cur) / groupedFeatures.length
]
const averageFeature = cloneDeep(groupedFeatures[0])
if (averageFeature.properties._pfi) {
averageFeature.properties._pfi = groupedFeatures.map(f => f.properties._pfi).join(',')
}
averageFeature.geometry.coordinates = averageCoordinates
if (argv.debug) {
// create a spider web to illustrate which features were clustered together and where the average point is
const spiderWebCoordinates = []
debugStreams.singleCluster.write(averageFeature)
groupedFeatures.forEach(feature => {
// debugStreams.singleCluster.write(feature)
// start with the average point
spiderWebCoordinates.push(averageFeature.geometry.coordinates)
// go out to the source point
spiderWebCoordinates.push(feature.geometry.coordinates)
// end back at the average point
spiderWebCoordinates.push(averageFeature.geometry.coordinates)
})
// output a web connecting the source points for visualisation
debugStreams.singleCluster.write({
type: 'Feature',
properties: Object.assign({ '_type': 'Single Cluster' }, averageFeature.properties),
geometry: {
type: 'LineString',
coordinates: spiderWebCoordinates
}
})
}
this.push(averageFeature)
} else {
// more than one cluster, reduce those clustered into centroids, and then report all the centroids
// these will need to be manually reviewed
const clusterAverages = clusters.map(cluster => {
if (cluster.length === 1) {
return cluster[0]
} else {
const averageCoordinates = [
cluster.map(f => f.geometry.coordinates[0]).reduce((acc, cur) => acc + cur) / cluster.length,
cluster.map(f => f.geometry.coordinates[1]).reduce((acc, cur) => acc + cur) / cluster.length
]
const averageFeature = cloneDeep(cluster[0])
if (averageFeature.properties._pfi) {
averageFeature.properties._pfi = groupedFeatures.map(f => f.properties._pfi).join(',')
}
averageFeature.geometry.coordinates = averageCoordinates
return averageFeature
}
})
// report these as address points with the same attributes but different locations beyond the cluster threshold
if (argv.debug) {
const webOfMatches = {
type: 'Feature',
properties: Object.assign(
{ '_type': 'Multi Cluster' },
clusterAverages[0].properties,
clusterAverages[0].properties._pfi ? { _pfi: clusterAverages.map(f => f.properties._pfi).join(',')} : {}
),
geometry: {
type: 'LineString',
coordinates: clusterAverages.map(p => p.geometry.coordinates)
}
}
clusterAverages.forEach(feature => {
// output candidate feature
debugStreams.multiCluster.write(feature)
})
// output a web connecting the candidates for visualisation
debugStreams.multiCluster.write(webOfMatches)
// output as a MapRoulette task
const task = {
type: 'FeatureCollection',
features: [
...groupedFeatures
],
cooperativeWork: {
meta: {
version: 2,
type: 2
},
file: {
type: 'xml',
format: 'osc',
encoding: 'base64',
content: Buffer.from(featureToOsc(groupedFeatures[0])).toString('base64') // the base64-encoded osc file
}
}
}
debugStreams.mr_duplicateAddressFarApart.write(task)
}
}
}
}
callback()
}
})
function featureToOsc(feature) {
return xml.json2xml({
_declaration: {
_attributes: {
version: "1.0",
encoding: "UTF-8"
}
},
osmChange: {
_attributes: {
version: '0.6',
generator: 'alantgeo/vicmap2osm'
},
create: {
node: {
_attributes: {
id: -1,
version: 1,
lat: feature.geometry.coordinates[1],
lon: feature.geometry.coordinates[0]
},
tag: Object.keys(_.omit(feature.properties, ['_pfi'])).map(key => {
return {
_attributes: {
k: key,
v: feature.properties[key]
}
}
})
}
}
}
}, Object.assign({
compact: true,
attributeValueFn: value => {
// these values were tested with test/xmlEntities.js
return value.replace(/"/g, '"') // convert quote back before converting amp
.replace(/&/g, '&')
.replace(/</g, '<')
.replace(/>/g, '>')
.replace(/"/g, '"')
}
}, argv.dryRun ? { spaces: 2 } : {}))
}
// ndjson streams to output debug features
const debugKeys = ['singleCluster', 'multiCluster', 'droppedSameCoordinates', 'mr_duplicateAddressFarApart']
const debugStreams = {}
const debugStreamOutputs = {}
if (argv.debug) {
debugKeys.forEach(key => {
debugStreams[key] = ndjson.stringify()
debugStreamOutputs[key] = debugStreams[key].pipe(fs.createWriteStream(`debug/reduceDuplicates/${key}.geojson`))
})
}
// first pass to index by geometry
console.log('Pass 1/2: index by address properties')
pipeline(
fs.createReadStream(inputFile),
ndjson.parse(),
index,
err => {
if (err) {
console.log(err)
process.exit(1)
} else {
console.log(` of ${sourceCount.toLocaleString()} features found ${Object.keys(features).length.toLocaleString()} unique addresses`)
// second pass to reduce duplicate features
console.log('Pass 2/2: reduce duplicate features')
pipeline(
Readable.from(Object.keys(features)),
reduce,
ndjson.stringify(),
fs.createWriteStream(outputFile),
err => {
if (err) {
console.log(err)
process.exit(1)
} else {
if (argv.debug) {
debugKeys.forEach(key => {
debugStreams[key].end()
})
Promise.all(debugKeys.map(key => {
return new Promise(resolve => {
debugStreamOutputs[key].on('finish', () => {
console.log(`saved debug/reduceDuplicates/${key}.geojson`)
resolve()
})
})
}))
.then(() => {
process.exit(0)
})
} else {
process.exit(0)
}
}
}
)
}
}
)
|