aboutsummaryrefslogtreecommitdiff
path: root/bin/reduceDuplicates.js
blob: 985a0e11c20ce5b9f195b3293590e2cc540cdc7b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env node

/**
 * Remove duplicates (exact tags) at the same location or within a small proximity.
 */

const fs = require('fs')
const { Readable, Transform, pipeline } = require('stream')
const ndjson = require('ndjson')
const cluster = require('../lib/cluster.js')
const cloneDeep = require('clone-deep')

const argv = require('yargs/yargs')(process.argv.slice(2))
  .option('debug', {
    type: 'boolean',
    description: 'Dumps full debug logs'
  })
  .argv

if (argv._.length < 2) {
  console.error("Usage: ./reduceDuplicates.js input.geojson output.geojson")
  process.exit(1)
}

const inputFile = argv._[0]
const outputFile = argv._[1]

if (!fs.existsSync(inputFile)) {
  console.error(`${inputFile} not found`)
  process.exit(1)
}

let sourceCount = 0
const features = {}

// index features by properties
const index = new Transform({
  readableObjectMode: true,
  writableObjectMode: true,
  transform(feature, encoding, callback) {
    sourceCount++

    if (process.stdout.isTTY && sourceCount % 10000 === 0) {
      process.stdout.write(` ${sourceCount / 1000}k\r`)
    }

    const key = [
      // feature.properties['addr:unit:prefix'],
      feature.properties['addr:unit'],
      feature.properties['addr:housenumber'],
      feature.properties['addr:street'],
      feature.properties['addr:suburb'],
      feature.properties['addr:state'],
      feature.properties['addr:postcode']
    ].join('/')

    if (!(key in features)) {
      features[key] = []
    }
    features[key].push(feature)

    callback()
  }
})

// remove duplicates
let reduceIndex = 0
const reduce = new Transform({
  readableObjectMode: true,
  writableObjectMode: true,
  transform(key, encoding, callback) {
    reduceIndex++
    if (process.stdout.isTTY && reduceIndex % 10000 === 0) {
      process.stdout.write(` ${reduceIndex / 1000}k / ${Math.round(sourceCount / 1000)}k (${Math.round(reduceIndex / sourceCount * 100)}%)\r`)
    }

    const groupedFeatures = features[key]
    if (groupedFeatures.length === 1) {
      // address not duplicated

      this.push(groupedFeatures[0])
    } else {
      // address appears multiple times

      const sameCoordinates = [...new Set(groupedFeatures.map(f => f.geometry.coordinates.join(',')))].length <= 1
      if (sameCoordinates) {
        // features have same properties and same geometry, so they are true duplicates which can safely be reduced to one
        this.push(groupedFeatures[0])
      } else {
        // features have same properties but not all with the same geometry

        // cluster features with a threshold of 25m
        const clusters = cluster(groupedFeatures, 25)

        // if clustered into a single cluster, then output a single average feature
        // this should be safe to use as within 25m
        if (clusters.length === 1) {
          const averageCoordinates = [
            groupedFeatures.map(f => f.geometry.coordinates[0]).reduce((acc, cur) => acc + cur) / groupedFeatures.length,
            groupedFeatures.map(f => f.geometry.coordinates[1]).reduce((acc, cur) => acc + cur) / groupedFeatures.length
          ]
          const averageFeature = cloneDeep(groupedFeatures[0])
          averageFeature.geometry.coordinates = averageCoordinates

          if (argv.debug) {
            // create a spider web to illustrate which features were clustered together and where the average point is
            const spiderWebCoordinates = []

            debugStreams.singleCluster.write(averageFeature)
            groupedFeatures.forEach(feature => {
              // debugStreams.singleCluster.write(feature)

              // start with the average point
              spiderWebCoordinates.push(averageFeature.geometry.coordinates)
              // go out to the source point
              spiderWebCoordinates.push(feature.geometry.coordinates)
              // end back at the average point
              spiderWebCoordinates.push(averageFeature.geometry.coordinates)
            })

            // output a web connecting the source points for visualisation
            debugStreams.singleCluster.write({
              type: 'Feature',
              properties: Object.assign({ '_type': 'Single Cluster' }, averageFeature.properties),
              geometry: {
                type: 'LineString',
                coordinates: spiderWebCoordinates
              }
            })
          }

          this.push(averageFeature)
        } else {
          // more than one cluster, reduce those clustered into centroids, and then report all the centroids
          // these will need to be manually reviewed
          const clusterAverages = clusters.map(cluster => {
            if (cluster.length === 1) {
              return cluster[0]
            } else {
              const averageCoordinates = [
                cluster.map(f => f.geometry.coordinates[0]).reduce((acc, cur) => acc + cur) / cluster.length,
                cluster.map(f => f.geometry.coordinates[1]).reduce((acc, cur) => acc + cur) / cluster.length
              ]
              const averageFeature = cloneDeep(cluster[0])
              averageFeature.geometry.coordinates = averageCoordinates
              return averageFeature
            }
          })

          // report these as address points with the same attributes but different locations beyond the cluster threshold
          if (argv.debug) {
            const webOfMatches = {
              type: 'Feature',
              properties: Object.assign({ '_type': 'Multi Cluster' }, clusterAverages[0].properties),
              geometry: {
                type: 'LineString',
                coordinates: clusterAverages.map(p => p.geometry.coordinates)
              }
            }
            clusterAverages.forEach(feature => {
              // output candidate feature
              debugStreams.multiCluster.write(feature)
            })
            // output a web connecting the canidates for visualisation
            debugStreams.multiCluster.write(webOfMatches)
          }
        }
      }
    }

    callback()
  }
})

// ndjson streams to output debug features
const debugKeys = ['singleCluster', 'multiCluster']
const debugStreams = {}
const debugStreamOutputs = {}

if (argv.debug) {
  debugKeys.forEach(key => {
    debugStreams[key] = ndjson.stringify()
    debugStreamOutputs[key] = debugStreams[key].pipe(fs.createWriteStream(`debug/reduceDuplicates/${key}.geojson`))
  })
}

// first pass to index by geometry
console.log('Pass 1/2: index by address properties')
pipeline(
  fs.createReadStream(inputFile),
  ndjson.parse(),
  index,
  err => {
    if (err) {
      console.log(err)
      process.exit(1)
    } else {
      console.log(`  of ${sourceCount.toLocaleString()} features found ${Object.keys(features).length.toLocaleString()} unique addresses`)
      // second pass to reduce duplicate features
      console.log('Pass 2/2: reduce duplicate features')
      pipeline(
        Readable.from(Object.keys(features)),
        reduce,
        ndjson.stringify(),
        fs.createWriteStream(outputFile),
        err => {
          if (err) {
            console.log(err)
            process.exit(1)
          } else {
            if (argv.debug) {
              debugKeys.forEach(key => {
                debugStreams[key].end()
              })

              Promise.all(debugKeys.map(key => {
                return new Promise(resolve => {
                  debugStreamOutputs[key].on('finish', () => {
                    console.log(`saved debug/reduceDuplicates/${key}.geojson`)
                    resolve()
                  })
                })
              }))
                .then(() => {
                  process.exit(0)
                })
            } else {
              process.exit(0)
            }
          }
        }
      )
    }
  }
)