aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorYuchen Pei <me@ypei.me>2019-03-13 21:24:04 +0100
committerYuchen Pei <me@ypei.me>2019-03-13 21:24:04 +0100
commit644b7867258c8bc216a50343ebf0faabc8e4f02a (patch)
treedaeff96cf37f8fc837379139362d9f0bfc250b01
parent120655e775d8400edbc3683d27003bf3e64c58d4 (diff)
added a post
-rw-r--r--posts/2019-03-13-a-tail-of-two-densities.md1224
1 files changed, 1224 insertions, 0 deletions
diff --git a/posts/2019-03-13-a-tail-of-two-densities.md b/posts/2019-03-13-a-tail-of-two-densities.md
new file mode 100644
index 0000000..1dbc573
--- /dev/null
+++ b/posts/2019-03-13-a-tail-of-two-densities.md
@@ -0,0 +1,1224 @@
+---
+date: 2019-02-13
+title: A Tail of Two Densities
+template: post
+comments: true
+---
+
+This is Part 1 of a two-part post where I give an introduction to
+differential privacy, a study of tail bounds of the divergence between
+probability measures, with the end goal of applying it to stochastic
+gradient descent.
+
+I start with the definition of $\epsilon$-differential privacy
+(corresponding to max divergence), followed by
+$(\epsilon, \delta)$-differential privacy (a.k.a. approximate
+differential privacy, corresponding to the $\delta$-approximate max
+divergence). I show the $\epsilon$-dp for Laplace mechanism and, using
+some tail bounds, the approximate dp for the Gaussian mechanism.
+
+Then I continue to state and prove the composition theorems for
+approximate differential privacy, as well as the subsampling theorem
+(a.k.a. amplification theorem).
+
+In Part 2, I discuss the Rényi differential privacy, corresponding to
+the Rényi divergence. Like in Part 1, I prove a composition theorem and
+a subsampling theorem.
+
+I also attempt to reproduce a seemingly better moment bound for the
+Gaussian mechanism with subsampling, with one intermediate step which I
+am not able to prove.
+
+Finally I explain the Tensorflow implementation of differential privacy,
+and using the results from both Part 1 and Part 2 to obtain some privacy
+guarantees for the differentially private stochastic gradient descent
+algorithm (DP-SGD). I also compare these privacy guarantees.
+
+**Acknowledgement**. I would like to thank
+[Stockholm AI](https://stockholm.ai) for introducing me to the subject
+of differential privacy. Thanks to (in chronological order) Reynaldo
+Boulogne, Martin Abedi, Ilya Mironov, Kurt Johansson, Mark Bun, Salil
+Vadhan, Jonathan Ullman, Yuanyuan Xu and Yiting Li for communication and
+discussions. The research was done while working at KTH Department of
+Mathematics.
+
+The gist of differential privacy
+--------------------------------
+
+If you only have one minute, here is what differential privacy is about:
+
+Let $p$ and $q$ be two probability densities, we define the *divergence
+variable* of $(p, q)$ to be
+
+$$L(p || q) := \log {p(\xi) \over q(\xi)}$$
+
+where $\xi$ is a random variable distributed according to $p$.
+
+Roughly speaking, differential privacy is the study of the tail bound of
+$L(p || q)$ and of $L(q || p)$: for certain $p$s and $q$s, and for
+$\epsilon > 0$, find $\delta(\epsilon)$ such that
+
+$$\mathbb P(L(p || q) > \epsilon) < \delta(\epsilon) > \mathbb P(L(q || p) > \epsilon),$$
+
+where $p$ and $q$ are the laws of the outputs of a randomised functions
+on two very similar inputs.
+
+In application, the inputs are databases and the randomised functions
+are queries with an added noise, and the tail bound gives privacy
+guarantee. When it comes to gradient descent, the input is the training
+dataset, and the query updates the parameters, and privacy is achieved
+by adding noise to the gradients.
+
+Now if you have an hour\...
+
+$\epsilon$-dp
+-------------
+
+**Definition (Mechanisms)**. Let $X$ be a
+space with a metric $d: X \times X \to \mathbb N$. A *mechanism* $M$ is
+a function that takes $x \in X$ as input and outputs a random variable
+on $Y$.
+
+In this post, $X = Z^m$ is the space of datasets of $m$ rows for some
+integer $m$, where each item resides in $Z$. In this case the distance
+$d(x, x') := \#\{i: x_i \neq x'_i\}$ is the number of rows that differ
+between $x$ and $x'$.
+
+Normally we have a query $f: X \to Y$, and construct the mechanism $M$
+from $f$ by adding a noise:
+
+$$M(x) := f(x) + \text{noise}.$$
+
+Later, we will also consider mechanisms constructed by composition of
+other mechanisms.
+
+In this post $Y = \mathbb R^d$ for some $d$.
+
+**Definition (Sensitivity)**. Let
+$f: X \to \mathbb R^d$ be a function. The *sensitivity* $S_f$ of $f$ is
+defined as
+
+$$S_f := \sup_{x, x' \in X: d(x, x') = 1} \|f(x) - f(x')\|_2,$$
+
+where $\|y\|_2 = \sqrt{y_1^2 + ... + y_d^2}$ is the $\ell^2$-norm.
+
+**Definition (Differential
+Privacy)**. A mechanism $M$ is called $\epsilon$*-differential privacy*
+($\epsilon$-dp) if it satisfies the following condition: for all
+$x, x' \in X$ with $d(x, x') = 1$, and for all measureable set
+$S \subset \mathbb R^n$,
+
+$$\mathbb P(M(x) \in S) \le e^\epsilon P(M(x') \in S). \qquad (1)$$
+
+An example of $\epsilon$-dp mechanism is the Laplace mechanism.
+
+**Definition**. The Laplace distribution over $\mathbb R$
+with parameter $b > 0$ has probability density function
+
+$$f_{\text{Lap}(b)}(x) = {1 \over 2 b} e^{- {|x| \over b}}.$$
+
+**Definition**. Let $d = 1$. The Laplace mechanism is
+defined by
+
+$$M(x) = f(x) + \text{Lap}(b).$$
+
+**Claim**. The Laplace mechanism with
+
+$$b \ge \epsilon^{-1} S_f \qquad (1.5)$$
+
+is $\epsilon$-dp.
+
+**Proof**. Quite straightforward. Let $p$ and $q$ be the laws
+of $M(x)$ and $M(x')$ respectively.
+
+$${p (y) \over q (y)} = {f_{\text{Lap}(b)} (y - f(x)) \over f_{\text{Lap}(b)} (y - f(x'))} = \exp(b^{-1} (|y - f(x')| - |y - f(x)|))$$
+
+Using triangular inequality $|A| - |B| \le |A - B|$ on the right hand
+side, we have
+
+$${p (y) \over q (y)} \le \exp(b^{-1} (|f(x) - f(x')|)) \le \exp(\epsilon)$$
+
+where in the last step we use the condition (1.5). $\square$
+
+Approximate differential privacy
+--------------------------------
+
+Unfortunately, $\epsilon$-dp does not apply to the most commonly used
+noise, the Gaussian noise. To fix this, we need to relax the definition
+a bit.
+
+**Definition**. A mechanism $M$ is said to be
+$(\epsilon, \delta)$*-differentially private* if for all $x, x' \in X$
+with $d(x, x') = 1$ and for all measureable $S \subset \mathbb R^d$
+
+$$\mathbb P(M(x) \in S) \le e^\epsilon P(M(x') \in S) + \delta. \qquad (2)$$
+
+Immediately we see that the $(\epsilon, \delta)$-dp is meaningful only
+if $\delta < 1$.
+
+### Indistinguishability
+
+To understand $(\epsilon, \delta)$-dp, it is helpful to study
+$(\epsilon, \delta)$-indistinguishability.
+
+**Definition**. Two probability measures $p$ and $q$ on
+the same space are called $(\epsilon, \delta)$*-ind(istinguishable)* if
+for all measureable sets $S$:
+
+$$\begin{aligned}
+p(S) \le e^\epsilon q(S) + \delta, \qquad (3) \\
+q(S) \le e^\epsilon p(S) + \delta. \qquad (4)
+\end{aligned}$$
+
+As before, we also call random variables $\xi$ and $\eta$ to be
+$(\epsilon, \delta)$-ind if their laws are $(\epsilon, \delta)$-ind.
+When $\delta = 0$, we call it $\epsilon$-ind.
+
+Immediately we have
+
+**Claim 0**. $M$ is $(\epsilon, \delta)$-dp (resp.
+$\epsilon$-dp) iff $M(x)$ and $M(x')$ are $(\epsilon, \delta)$-ind
+(resp. $\epsilon$-ind) for all $x$ and $x'$ with distance $1$.
+
+**Definition (Divergence
+Variable)**. Let $p$ and $q$ be two probability measures. Let $\xi$ be a
+random variable distributed according to $p$, we define a random
+variable $L(p || q)$ by
+
+$$L(p || q) := \log {p(\xi) \over q(\xi)},$$
+
+and call it the *divergence variable* of $(p, q)$.
+
+One interesting and readily verifiable fact is
+
+$$\mathbb E L(p || q) = D(p || q)$$
+
+where $D$ is the KL-divergence.
+
+**Claim 1**. If
+
+$$\begin{aligned}
+\mathbb P(L(p || q) \le \epsilon) &\ge 1 - \delta, \qquad(5) \\
+\mathbb P(L(q || p) \le \epsilon) &\ge 1 - \delta
+\end{aligned}$$
+
+then $p$ and $q$ are $(\epsilon, \delta)$-ind.
+
+**Proof**. We verify (3), and (4) can be shown in the same
+way. Let $A := \{y \in Y: \log {p(y) \over q(y)} > \epsilon\}$, then by
+(5) we have
+
+$$p(A) < \delta.$$
+
+So
+
+$$p(S) = p(S \cap A) + p(S \setminus A) \le \delta + e^\epsilon q(S \setminus A) \le \delta + e^\epsilon q(S).$$
+
+$\square$
+
+This Claim translates differential privacy to the tail bound of
+divergence variables, and for the rest of this post all dp results are
+obtained by estimating this tail bound.
+
+In the following we discuss the contrary of Claim 1. The discussions are
+rather technical, and readers can skip to the next subsection on first
+reading.
+
+The contrary of Claim 1 is not true.
+
+**Claim 2**. There exists $\epsilon, \delta > 0$, and $p$
+and $q$ that are $(\epsilon, \delta)$-ind, such that
+
+$$\begin{aligned}
+\mathbb P(L(p || q) \le \epsilon) &< 1 - \delta, \\
+\mathbb P(L(q || p) \le \epsilon) &< 1 - \delta
+\end{aligned}$$
+
+$, and
+$p(0) = q(1) = 2 / 5$ and $p(1) = q(0) = 3 / 5$. Then it is not hard to
+verify that $p$ and $q$ are $(\log {4 \over 3}, {1 \over 3})$-ind: just
+check (3) for all four possible $S \subset Y$ and (4) holds by symmetry.
+On the other hand,
+
+$$\mathbb P(L(p || q) \le \log {4 \over 3}) = \mathbb P(L(q || p) \le \log {4 \over 3}) = {2 \over 5} < {2 \over 3}.$$
+
+$\square$
+
+A weaker version of the contrary of Claim 1 is true
+(Kasiviswanathan-Smith 2015), though:
+
+**Claim 3**. Let $\alpha > 1$. If $p$ and $q$ are
+$(\epsilon, \delta)$-ind, then
+
+$$\mathbb P(L(p || q) > \alpha \epsilon) < {1 \over 1 - \exp((1 - \alpha) \epsilon)} \delta.$$
+
+**Proof**. Define
+
+$$S = \{y: p(y) > e^{\alpha \epsilon} q(y)\}.$$
+
+Then we have
+
+$$e^{\alpha \epsilon} q(S) < p(S) \le e^\epsilon q(S) + \delta,$$
+
+where the first inequality is due to the definition of $S$, and the
+second due to the $(\epsilon, \delta)$-ind. Therefore
+
+$$q(S) \le {\delta \over e^{\alpha \epsilon} - e^\epsilon}.$$
+
+Using the $(\epsilon, \delta)$-ind again we have
+
+$$p(S) \le e^\epsilon q(S) + \delta = {1 \over 1 - e^{(1 - \alpha) \epsilon}} \delta.$$
+
+$\square$
+
+This can be quite bad if $\epsilon$ is small.
+
+To prove the composition theorems in the next section, we need a
+condition better than that in Claim 1 so that we can go back and forth
+between indistinguishability and such condition. In other words, we need
+a *characterisation* of indistinguishability.
+
+Let us take a careful look at the condition in Claim 1 and call it
+**C1**:
+
+**C1**. $\mathbb P(L(p || q) \le \epsilon) \ge 1 - \delta$ and
+$\mathbb P(L(q || p) \le \epsilon) \ge 1 - \delta$
+
+It is equivalent to
+
+**C2**. there exist events $A, B \subset Y$ with probabilities
+$p(A)$ and $q(B)$ at least $1 - \delta$ such that
+$\log p(y) - \log q(y) \le \epsilon$ for all $y \in A$ and
+$\log q(y) - \log p(y) \le \epsilon$ for all $y \in B$.
+
+A similar-looking condition to **C2** is the following:
+
+**C3**. Let $\Omega$ be the [underlying probability
+space](https://en.wikipedia.org/wiki/Probability_space#Definition).
+There exist two events $E, F \subset \Omega$ with
+$\mathbb P(E), \mathbb P(F) \ge 1 - \delta$, such that
+$|\log p_{|E}(y) - \log q_{|F}(y)| \le \epsilon$ for all $y \in Y$.
+
+Here $p_{|E}$ (resp. $q_{|F}$) is $p$ (resp. $q$) conditioned on event
+$E$ (resp. $F$).
+
+**C2** and
+**C3** are in different spaces, and therefore we can not write
+$p_{|E}(S)$ as $p(S | E)$ or $q_{|F}(S)$ as $q(S | F)$. In fact, if we
+let $E$ and $F$ in **C3** be subsets of $Y$ with
+$p(E), q(F) \ge 1 - \delta$ and assume $p$ and $q$ have the same
+supports, then **C3** degenerates to a stronger condition than
+$ and
+$q_F(y) = q(y) 1_{y \in F}$, and so $p_E(y) \le e^\epsilon q_F(y)$
+forces $E \subset F$. We also obtain $F \subset E$ in the same way. This
+gives us $E = F$, and **C2** with
+$A = B = E = F$.
+
+As it turns out, **C3** is the condition we need.
+
+**Claim 4**. Two probability measures $p$ and $q$ are
+$(\epsilon, \delta)$-ind if and only if **C3** holds.
+
+**Proof**(Murtagh-Vadhan 2018). The \"if\" direction is proved
+in the same way as Lemma 1. Without loss of generality we may assume
+$\mathbb P(E) = \mathbb P(F) \ge 1 - \delta$. To see this, suppose $F$
+has higher probability than $E$, then we can substitute $F$ with a
+subset of $F$ that has the same probability as $E$ (with possible
+enlargement of the probability space).
+
+Let $\xi \sim p$ and $\eta \sim q$ be two independent random variables,
+then
+
+$$\begin{aligned}
+p(S) &= \mathbb P(\xi \in S | E) \mathbb P(E) + \mathbb P(\xi \in S; E^c) \\
+&\le e^\epsilon \mathbb P(\eta \in S | F) \mathbb P(E) + \delta \\
+&= e^\epsilon \mathbb P(\eta \in S | F) \mathbb P(F) + \delta\\
+&\le e^\epsilon q(S) + \delta.
+\end{aligned}$$
+
+The \"only-if\" direction is more involved.
+
+We construct events $E$ and $F$ by constructing functions
+$e, f: Y \to [0, \infty)$ satisfying the following conditions:
+
+1. $0 \le e(y) \le p(y)$ and $0 \le f(y) \le q(y)$ for all $y \in Y$.
+2. $|\log e(y) - \log f(y)| \le \epsilon$ for all $y \in Y$.
+3. $e(Y), f(Y) \ge 1 - \delta$.
+4. $e(Y) = f(Y)$.
+
+Here for a set $S \subset Y$, $e(S) := \int_S e(y) dy$, and the same
+goes for $f(S)$.
+
+Let $\xi \sim p$ and $\eta \sim q$. Then we define $E$ and $F$ by
+
+$$\mathbb P(E | \xi = y) = e(y) / p(y) \\
+\mathbb P(F | \eta = y) = f(y) / q(y).$$
+
+**Remark inside proof**. This can seem a bit
+confusing. Intuitively, we can think of it this way when $Y$ is finite:
+Recall a random variable on $Y$ is a function from the probability space
+$\Omega$ to $Y$. Let event $G_y \subset \Omega$ be defined as
+$G_y = \xi^{-1} (y)$. We cut $G_y$ into the disjoint union of $E_y$ and
+$G_y \setminus E_y$ such that $\mathbb P(E_y) = e(y)$. Then
+$E = \bigcup_{y \in Y} E_y$. So $e(y)$ can be seen as the \"density\" of
+$E$.
+
+Indeed, given $E$ and $F$ defined this way, we have
+
+$$p_E(y) = {e(y) \over e(Y)} \le {\exp(\epsilon) f(y) \over e(Y)} = {\exp(\epsilon) f(y) \over f(Y)} = \exp(\epsilon) q_F(y).$$
+
+and
+
+$$\mathbb P(E) = \int \mathbb P(E | \xi = y) p(y) dy = e(Y) \ge 1 - \delta,$$
+
+and the same goes for $\mathbb P(F)$.
+
+What remains is to construct $e(y)$ and $f(y)$ satisfying the four
+conditions.
+
+Like in the proof of Claim 1, let $S, T \subset Y$ be defined as
+
+$$\begin{aligned}
+S := \{y: p(y) > \exp(\epsilon) q(y)\},\\
+T := \{y: q(y) > \exp(\epsilon) p(y)\}.
+\end{aligned}$$
+
+Let
+
+$$\begin{aligned}
+e(y) &:= \exp(\epsilon) q(y) 1_{y \in S} + p(y) 1_{y \notin S}\\
+f(y) &:= \exp(\epsilon) p(y) 1_{y \in T} + q(y) 1_{y \notin T}. \qquad (6)
+\end{aligned}$$
+
+By checking them on the three disjoint subsets $S$, $T$, $(S \cup T)^c$,
+it is not hard to verify that the $e(y)$ and $f(y)$ constructed this way
+satisfy the first two conditions. They also satisfy the third condition:
+
+$$\begin{aligned}
+e(Y) &= 1 - (p(S) - \exp(\epsilon) q(S)) \ge 1 - \delta, \\
+f(Y) &= 1 - (q(T) - \exp(\epsilon) p(T)) \ge 1 - \delta.
+\end{aligned}$$
+
+If $e(Y) = f(Y)$ then we are done. Otherwise, without loss of
+generality, assume $e(Y) < f(Y)$, then all it remains to do is to reduce
+the value of $f(y)$ while preserving Condition 1, 2 and 3, until
+$f(Y) = e(Y)$.
+
+As it turns out, this can be achieved by reducing $f(y)$ on the set
+$\{y \in Y: q(y) > p(y)\}$. To see this, let us rename the $f(y)$
+defined in (6) $f_+(y)$, and construct $f_-(y)$ by
+
+$$f_-(y) := p(y) 1_{y \in T} + (q(y) \wedge p(y)) 1_{y \notin T}.$$
+
+It is not hard to show that not only $e(y)$ and $f_-(y)$ also satisfy
+conditions 1-3, but
+
+$$e(y) \ge f_-(y), \forall y \in Y,$$
+
+and thus $e(Y) \ge f_-(Y)$. Therefore there exists an $f$ that
+interpolates between $f_-$ and $f_+$ with $f(Y) = e(Y)$. $\square$
+
+To prove the adaptive composition theorem for approximate differential
+privacy, we need a similar claim (We use index shorthand
+$\xi_{< i} = \xi_{1 : i - 1}$ and similarly for other notations):
+
+$ be random
+variables. Let
+
+$$\begin{aligned}
+p_i(S | y_{1 : i - 1}) := \mathbb P(\xi_i \in S | \xi_{1 : i - 1} = y_{1 : i - 1})\\
+q_i(S | y_{1 : i - 1}) := \mathbb P(\eta_i \in S | \eta_{1 : i - 1} = y_{1 : i - 1})
+\end{aligned}$$
+
+be the conditional laws of $\xi_i | \xi_{< i}$ and $\eta_i | \eta_{< i}$
+respectively. Then the following are equivalent:
+
+1. For any $y_{< i} \in Y^{i - 1}$, $p_i(\cdot | y_{< i})$ and
+ $q_i(\cdot | y_{< i})$ are $(\epsilon, \delta)$-ind
+2. There exists events $E_i, F_i \subset \Omega$ with
+ $\mathbb P(E_i | \xi_{<i} = y_{<i}) = \mathbb P(F_i | \eta_{<i} = y_{< i}) \ge 1 - \delta$
+ for any $y_{< i}$, such that $p_{i | E_i}(\cdot | y_{< i})$ and
+ $q_{i | E_i} (\cdot | y_{< i})$ are $\epsilon$-ind for any
+ $y_{< i}$, where
+ $$\begin{aligned}
+ p_{i | E_i}(S | y_{1 : i - 1}) := \mathbb P(\xi_i \in S | E_i, \xi_{1 : i - 1} = y_{1 : i - 1})\\
+ q_{i | F_i}(S | y_{1 : i - 1}) := \mathbb P(\eta_i \in S | F_i, \eta_{1 : i - 1} = y_{1 : i - 1})
+ \end{aligned}$$
+
+ are $p_i$ and $q_i$ conditioned on $E_i$ and $F_i$ respectively.
+
+**Proof**. Item 2 =\> Item 1: as in the Proof of Claim 4,
+
+$$\begin{aligned}
+p_i(S | y_{< i}) &= p_{i | E_i} (S | y_{< i}) \mathbb P(E_i | \xi_{< i} = y_{< i}) + p_{i | E_i^c}(S | y_{< i}) \mathbb P(E_i^c | \xi_{< i} = y_{< i}) \\
+&\le p_{i | E_i} (S | y_{< i}) \mathbb P(E_i | \xi_{< i} = y_{< i}) + \delta \\
+&= p_{i | E_i} (S | y_{< i}) \mathbb P(F_i | \xi_{< i} = y_{< i}) + \delta \\
+&\le e^\epsilon q_{i | F_i} (S | y_{< i}) \mathbb P(F_i | \xi_{< i} = y_{< i}) + \delta \\
+&= e^\epsilon q_i (S | y_{< i}) + \delta.
+\end{aligned}$$
+
+The direction from
+$q_i(S | y_{< i}) \le e^\epsilon p_i(S | y_{< i}) + \delta$ can be shown
+in the same way.
+
+Item 1 =\> Item 2: as in the Proof of Claim 4 we construct
+$e(y_{1 : i})$ and $f(y_{1 : i})$ as \"densities\" of events $E_i$ and
+$F_i$.
+
+Let
+
+$$\begin{aligned}
+e(y_{1 : i}) &:= e^\epsilon q_i(y_i | y_{< i}) 1_{y_i \in S_i(y_{< i})} + p_i(y_i | y_{< i}) 1_{y_i \notin S_i(y_{< i})}\\
+f(y_{1 : i}) &:= e^\epsilon p_i(y_i | y_{< i}) 1_{y_i \in T_i(y_{< i})} + q_i(y_i | y_{< i}) 1_{y_i \notin T_i(y_{< i})}\\
+\end{aligned}$$
+
+where
+
+$$\begin{aligned}
+S_i(y_{< i}) = \{y_i \in Y: p_i(y_i | y_{< i}) > e^\epsilon q_i(y_i | y_{< i})\}\\
+T_i(y_{< i}) = \{y_i \in Y: q_i(y_i | y_{< i}) > e^\epsilon p_i(y_i | y_{< i})\}.
+\end{aligned}$$
+
+Then $E_i$ and $F_i$ are defined as
+
+$$\begin{aligned}
+\mathbb P(E_i | \xi_{\le i} = y_{\le i}) &= {e(y_{\le i}) \over p_i(y_{\le i})},\\
+\mathbb P(F_i | \xi_{\le i} = y_{\le i}) &= {f(y_{\le i}) \over q_i(y_{\le i})}.
+\end{aligned}$$
+
+The rest of the proof is almost the same as the proof of Lemma 2.
+$\square$
+
+### Back to approximate differential privacy
+
+By Claim 0 and 1 we have
+
+**Claim 6**. If for all $x, x' \in X$ with distance $1$
+
+$$\mathbb P(L(M(x) || M(x')) \le \epsilon) \ge 1 - \delta,$$
+
+then $M$ is $(\epsilon, \delta)$-dp.
+
+Note that in the literature the divergence variable $L(M(x) || M(x'))$
+is also called the *privacy loss*.
+
+By Claim 0 and Claim 4 we have
+
+**Claim 7**. $M$ is $(\epsilon, \delta)$-dp if and only if
+for every $x, x' \in X$ with distance $1$, there exist events
+$E, F \subset \Omega$ with $\mathbb P(E) = \mathbb P(F) \ge 1 - \delta$,
+$M(x) | E$ and $M(x') | F$ are $\epsilon$-ind.
+
+We can further simplify the privacy loss $L(M(x) || M(x'))$, by
+observing the translation and scaling invariance of $L(\cdot||\cdot)$:
+
+$$\begin{aligned}
+L(\xi || \eta) &\overset{d}{=} L(\alpha \xi + \beta || \alpha \eta + \beta), \qquad \alpha \neq 0. \qquad (6.1)
+\end{aligned}$$
+
+With this and the definition
+
+$$M(x) = f(x) + \zeta$$
+
+for some random variable $\zeta$, we have
+
+$$L(M(x) || M(x')) \overset{d}{=} L(\zeta || \zeta + f(x') - f(x)).$$
+
+Without loss of generality, we can consider $f$ with sensitivity $1$,
+for
+
+$$L(f(x) + S_f \zeta || f(x') + S_f \zeta) \overset{d}{=} L(S_f^{-1} f(x) + \zeta || S_f^{-1} f(x') + \zeta)$$
+
+so for any noise $\zeta$ that achieves $(\epsilon, \delta)$-dp for a
+function with sensitivity $1$, we have the same privacy guarantee by for
+an arbitrary function with sensitivity $S_f$ by adding a noise
+$S_f \zeta$.
+
+With Claim 6 we can show that the Gaussian mechanism is approximately
+differentially private. But first we need to define it.
+
+**Definition (Gaussian mechanism)**.
+Given a query $f: X \to Y$, the *Gaussian mechanism* $M$ adds a Gaussian
+noise to the query:
+
+$$M(x) = f(x) + N(0, \sigma^2 I).$$
+
+Some tail bounds for the Gaussian distribution will be useful.
+
+**Claim 8 (Gaussian tail bounds)**.
+Let $\xi \sim N(0, 1)$ be a standard normal distribution. Then for
+$t > 0$
+
+$$\mathbb P(\xi > t) < {1 \over \sqrt{2 \pi} t} e^{- {t^2 \over 2}}, \qquad (6.3)$$
+
+and
+
+$$\mathbb P(\xi > t) < e^{- {t^2 \over 2}}. \qquad (6.5)$$
+
+**Proof**. Both bounds are well known. The first can be proved
+using
+
+$$\int_t^\infty e^{- {y^2 \over 2}} dy < \int_t^\infty {y \over t} e^{- {y^2 \over 2}} dy.$$
+
+The second is shown using Chernoff bound. For any random variable $\xi$,
+
+$$\mathbb P(\xi > t) < {\mathbb E \exp(\lambda \xi) \over \exp(\lambda t)} = \exp(\kappa_\xi(\lambda) - \lambda t), \qquad (6.7)$$
+
+where $\kappa_\xi(\lambda) = \log \mathbb E \exp(\lambda \xi)$ is the
+cumulant of $\xi$. Since (6.7) holds for any $\lambda$, we can get the
+best bound by minimising $\kappa_\xi(\lambda) - \lambda t$ (a.k.a. the
+Legendre transformation). When $\xi$ is standard normal, we get (6.5).
+$\square$
+
+**Remark**. We will use the Chernoff bound extensively in the
+second part of this post when considering Renyi differential privacy.
+
+**Claim 9**. The Gaussian mechanism on a query $f$ is
+$(\epsilon, \delta)$-dp, where
+
+$$\delta = \exp(- (\epsilon S_f \sigma - (2 S_f \sigma)^{-1})^2 / 2). \qquad (6.8)$$
+
+Contrarily, to achieve give $(\epsilon, \delta)$-dp, we may set
+
+$$\sigma > \left(\epsilon^{-1} \sqrt{2 \log \delta^{-1}} + (2 \epsilon)^{- {1 \over 2}}\right) S_f \qquad (6.81)$$
+
+or
+
+$$\sigma > (\epsilon^{-1} (1 \vee \sqrt{(\log (2 \pi)^{-1} \delta^{-2})_+}) + (2 \epsilon)^{- {1 \over 2}}) S_f \qquad (6.82)$$
+
+or
+
+$$\sigma > \epsilon^{-1} \sqrt{\log e^\epsilon \delta^{-2}} S_f \qquad (6.83)$$
+
+or
+
+$$\sigma > \epsilon^{-1} (\sqrt{1 + \epsilon} \vee \sqrt{(\log e^\epsilon (2 \pi)^{-1} \delta^{-2})_+}) S_f. \qquad (6.84)$$
+
+**Proof**. As discussed before we only need to consider the
+case where $S_f = 1$. Fix arbitrary $x, x' \in X$ with $d(x, x') = 1$.
+Let $\zeta = (\zeta_1, ..., \zeta_d) \sim N(0, I_d)$.
+
+By Claim 6 it suffices to bound
+
+$$\mathbb P(L(M(x) || M(x')) > \epsilon)$$
+
+We have by the linear invariance of $L$,
+
+$$L(M(x) || M(x')) = L(f(x) + \sigma \zeta || f(x') + \sigma \zeta) \overset{d}{=} L(\zeta|| \zeta + \Delta / \sigma),$$
+
+where $\Delta := f(x') - f(x)$.
+
+Plugging in the Gaussian density, we have
+
+$$L(M(x) || M(x')) \overset{d}{=} \sum_i {\Delta_i \over \sigma} \zeta_i + \sum_i {\Delta_i^2 \over 2 \sigma^2} \overset{d}{=} {\|\Delta\|_2 \over \sigma} \xi + {\|\Delta\|_2^2 \over 2 \sigma^2}.$$
+
+where $\xi \sim N(0, 1)$.
+
+Hence
+
+$$\mathbb P(L(M(x) || M(x')) > \epsilon) = \mathbb P(\zeta > {\sigma \over \|\Delta\|_2} \epsilon - {\|\Delta\|_2 \over 2 \sigma}).$$
+
+Since $\|\Delta\|_2 \le S_f = 1$, we have
+
+$$\mathbb P(L(M(x) || M(x')) > \epsilon) \le \mathbb P(\xi > \sigma \epsilon - (2 \sigma)^{-1}).$$
+
+Thus the problem is reduced to the tail bound of a standard normal
+distribution, so we can use Claim 8. Note that we implicitly require
+$\sigma > (2 \epsilon)^{- 1 / 2}$ here so that
+$\sigma \epsilon - (2 \sigma)^{-1} > 0$ and we can use the tail bounds.
+
+Using (6.3) we have
+
+$$\mathbb P(L(M(x) || M(x')) > \epsilon) < \exp(- (\epsilon \sigma - (2 \sigma)^{-1})^2 / 2).$$
+
+This gives us (6.8).
+
+To bound the right hand by $\delta$, we require
+
+$$\epsilon \sigma - {1 \over 2 \sigma} > \sqrt{2 \log \delta^{-1}}. \qquad (6.91)$$
+
+Solving this inequality we have
+
+$$\sigma > {\sqrt{2 \log \delta^{-1}} + \sqrt{2 \log \delta^{-1} + 2 \epsilon} \over 2 \epsilon}.$$
+
+Using
+$\sqrt{2 \log \delta^{-1} + 2 \epsilon} \le \sqrt{2 \log \delta^{-1}} + \sqrt{2 \epsilon}$,
+we can achieve the above inequality by having
+
+$$\sigma > \epsilon^{-1} \sqrt{2 \log \delta^{-1}} + (2 \epsilon)^{-{1 \over 2}}.$$
+
+This gives us (6.81).
+
+Alternatively, we can use the concavity of $\sqrt{\cdot}$:
+
+$$(2 \epsilon)^{-1} (\sqrt{2 \log \delta^{-1}} + \sqrt{2 \log \delta^{-1} + 2 \epsilon}) \le \epsilon^{-1} \sqrt{\log e^\epsilon \delta^{-2}},$$
+
+which gives us (6.83)
+
+Back to (6.9), if we use (6.5) instead, we need
+
+$$\log t + {t^2 \over 2} > \log {(2 \pi)^{- 1 / 2} \delta^{-1}}$$
+
+where $t = \epsilon \sigma - (2 \sigma)^{-1}$. This can be satisfied if
+
+$$\begin{aligned}
+t &> 1 \qquad (6.93)\\
+t &> \sqrt{\log (2 \pi)^{-1} \delta^{-2}}. \qquad (6.95)
+\end{aligned}$$
+
+We can solve both inequalities as before and obtain
+
+$$\sigma > \epsilon^{-1} (1 \vee \sqrt{(\log (2 \pi)^{-1} \delta^{-2})_+}) + (2 \epsilon)^{- {1 \over 2}},$$
+
+or
+
+$$\sigma > \epsilon^{-1}(\sqrt{1 + \epsilon} \vee \sqrt{(\log e^\epsilon (2 \pi)^{-1} \delta^{-2})_+}).$$
+
+This gives us (6.82)(6.84). $\square$
+
+When $\epsilon \le \alpha$ is bounded, by (6.83) (6.84) we can require
+either
+
+$$\sigma > \epsilon^{-1} (\sqrt{\log e^\alpha \delta^{-2}}) S_f$$
+
+or
+
+$$\sigma > \epsilon^{-1} (\sqrt{1 + \alpha} \vee \sqrt{(\log (2 \pi)^{-1} e^\alpha \delta^{-2})_+}).$$
+
+The second bound is similar to and slightly better than the one in
+Theorem A.1 of Dwork-Roth 2013, where $\alpha = 1$:
+
+$$\sigma > \epsilon^{-1} \left({3 \over 2} \vee \sqrt{(2 \log {5 \over 4} \delta^{-1})_+}\right) S_f.$$
+
+Note that the lower bound of ${3 \over 2}$ is implicitly required in the
+proof of Theorem A.1.
+
+Composition theorems
+--------------------
+
+So far we have seen how a mechanism made of a single query plus a noise
+can be proved to be differentially private. But we need to understand
+the privacy when composing several mechanisms, combinatorially or
+sequentially. Let us first define the combinatorial case:
+
+**Definition (Independent
+composition)**. Let $M_1, ..., M_k$ be $k$ mechanisms with independent
+noises. The mechanism $M = (M_1, ..., M_k)$ is called the *independent
+composition* of $M_{1 : k}$.
+
+To define the adaptive composition, let us motivate it with an example
+of gradient descent. Consider a neural network $h_\theta(x)$, where
+$\theta$ is the parameter and $x$ the input, gradient descent updates
+its parameter $\theta$ at each time $t$:
+
+$$\theta_{t} = \theta_{t - 1} - \alpha m^{-1} \sum_{i = 1 : m} \nabla_\theta h_\theta(x_i) |_{\theta = \theta_{t - 1}}.$$
+
+We may add privacy by adding noise $\zeta_t$ at each step:
+
+$$\theta_{t} = \theta_{t - 1} - \alpha m^{-1} \sum_{i = 1 : m} \nabla_\theta h_\theta(x_i) |_{\theta = \theta_{t - 1}} + \zeta_t. \qquad (6.97)$$
+
+Viewed as a sequence of mechanism, we have that at each time $t$, the
+mechanism $M_t$ takes input $x$, and outputs $\theta_t$. But $M_t$ also
+depends on the output of the previous mechanism $M_{t - 1}$. To this
+end, we define the adaptive composition.
+
+**Definition (Adaptive
+composition)**. Let $({M_i(y_{1 : i - 1})})_{i = 1 : k}$ be $k$
+mechanisms with independent noises, where $M_1$ has no parameter, $M_2$
+has one parameter in $Y$, $M_3$ has two parameters in $Y$ and so on. For
+$x \in X$, define $\xi_i$ recursively by
+
+$$\begin{aligned}
+\xi_1 &:= M_1(x)\\
+\xi_i &:= M_i(\xi_1, \xi_2, ..., \xi_{i - 1}) (x).
+\end{aligned}$$
+
+The *adaptive composition* of $M_{1 : k}$ is defined by
+$M(x) := (\xi_1, \xi_2, ..., \xi_k)$.
+
+The definition of adaptive composition may look a bit complicated, but
+the point is to describe $k$ mechanisms such that for each $i$, the
+output of the first, second, \..., $i - 1$th mechanisms determine the
+$i$th mechanism, like in the case of gradient descent.
+
+In Dwork-Rothblum-Vadhan 2010 (see also Dwork-Roth 2013) the adaptive
+composition is defined in a more general way, but the definition is
+based on the same principle, and proofs in this post on adaptive
+compositions carry over.
+
+It is not hard to see that the adaptive composition degenerates to
+independent composition when each $M_i(y_{1 : i})$ evaluates to the same
+mechanism regardless of $y_{1 : i}$, in which case the $\xi_i$s are
+independent.
+
+In the following when discussing adaptive compositions we sometimes omit
+the parameters for convenience without risk of ambiguity, and write
+$M_i(y_{1 : i})$ as $M_i$, but keep in mind of the dependence on the
+parameters.
+
+It is time to state and prove the composition theorems. In this section
+we consider $2 \times 2 \times 2 = 8$ of them, i.e. theorems of three
+dimensions, where there are two choices in each dimension:
+
+1. Composition of $\epsilon$-dp or more generally
+ $(\epsilon, \delta)$-dp mechanisms
+2. Composition of independent or more generally adaptive mechanisms
+3. Basic or advanced compositions
+
+Note that in the first two dimensions the second choice is more general
+than the first.
+
+The relation between proofs of these composition theorems is as follows:
+
+1. Claim 10 - Basic composition theorem for $(\epsilon, \delta)$-dp
+ with adaptive mechanisms: by a direct proof with an induction
+ argument
+2. Claim 14 - Advanced composition theorem for $\epsilon$-dp with
+ independent mechanisms: by factorising privacy loss and using
+ Hoeffding\'s Inequality
+3. Claim 16 - Advanced composition theorem for $\epsilon$-dp with
+ adaptive mechanisms: by factorising privacy loss and using Azuma\'s
+ Inequality
+4. Claims 17 and 18 - Advanced composition theorem for
+ $(\epsilon, \delta)$-dp with independent / adaptive mechanisms: by
+ using characterisations of $(\epsilon, \delta)$-dp in Claims 4 and 5
+ as an approximation of $\epsilon$-dp and then using Proofs in Item 2
+ or 3.
+
+**Claim 10 (Basic composition
+theorem).** Let $M_{1 : k}$ be $k$ mechanisms with independent noises
+such that for each $i$ and $y_{1 : i - 1}$, $M_i(y_{1 : i - 1})$ is
+$(\epsilon_i, \delta_i)$-dp. Then the adpative composition of
+$M_{1 : k}$ is $(\sum_i \epsilon_i, \sum_i \delta_i)$-dp.
+
+**Proof
+(Dwork-Lei 2009, see also Dwork-Roth 2013 Appendix B.1)**. Let $x$ and
+$x'$ be neighbouring points in $X$. Let $M$ be the adaptive composition
+of $M_{1 : k}$. Define
+
+$$\xi_{1 : k} := M(x), \qquad \eta_{1 : k} := M(x').$$
+
+Let $p^i$ and $q^i$ be the laws of $(\xi_{1 : i})$ and $(\eta_{1 : i})$
+respectively.
+
+Let $S_1, ..., S_k \subset Y$ and $T_i := \prod_{j = 1 : i} S_j$. We use
+two tricks.
+
+1. Since $\xi_i | \xi_{< i} = y_{< i}$ and
+ $\eta_i | \eta_{< i} = y_{< i}$ are $(\epsilon_i, \delta_i)$-ind,
+ and a probability is no greater than $1$,
+ $$\begin{aligned}
+ \mathbb P(\xi_i \in S_i | \xi_{< i} = y_{< i}) &\le (e^{\epsilon_i} \mathbb P(\eta_i \in S_i | \eta_{< i} = y_{< i}) + \delta_i) \wedge 1 \\
+ &\le (e^{\epsilon_i} \mathbb P(\eta_i \in S_i | \eta_{< i} = y_{< i}) + \delta_i) \wedge (1 + \delta_i) \\
+ &= (e^{\epsilon_i} \mathbb P(\eta_i \in S_i | \eta_{< i} = y_{< i}) \wedge 1) + \delta_i
+ \end{aligned}$$
+
+2. Given $p$ and $q$ that are $(\epsilon, \delta)$-ind, define
+ $$\mu(x) = (p(x) - e^\epsilon q(x))_+.$$
+
+ We have
+ $$\mu(S) \le \delta, \forall S$$
+
+ In the following we define
+ $\mu^{i - 1} = (p^{i - 1} - e^\epsilon q^{i - 1})_+$ for the same
+ purpose.
+
+We use an inductive argument to prove the theorem:
+
+$$\begin{aligned}
+\mathbb P(\xi_{\le i} \in T_i) &= \int_{T_{i - 1}} \mathbb P(\xi_i \in S_i | \xi_{< i} = y_{< i}) p^{i - 1} (y_{< i}) dy_{< i} \\
+&\le \int_{T_{i - 1}} (e^{\epsilon_i} \mathbb P(\eta_i \in S_i | \eta_{< i} = y_{< i}) \wedge 1) p^{i - 1}(y_{< i}) dy_{< i} + \delta_i\\
+&\le \int_{T_{i - 1}} (e^{\epsilon_i} \mathbb P(\eta_i \in S_i | \eta_{< i} = y_{< i}) \wedge 1) (e^{\epsilon_1 + ... + \epsilon_{i - 1}} q^{i - 1}(y_{< i}) + \mu^{i - 1} (y_{< i})) dy_{< i} + \delta_i\\
+&\le \int_{T_{i - 1}} e^{\epsilon_i} \mathbb P(\eta_i \in S_i | \eta_{< i} = y_{< i}) e^{\epsilon_1 + ... + \epsilon_{i - 1}} q^{i - 1}(y_{< i}) dy_{< i} + \mu_{i - 1}(T_{i - 1}) + \delta_i\\
+&\le e^{\epsilon_1 + ... + \epsilon_i} \mathbb P(\eta_{\le i} \in T_i) + \delta_1 + ... + \delta_{i - 1} + \delta_i.\\
+\end{aligned}$$
+
+In the second line we use Trick 1; in the third line we use the
+induction assumption; in the fourth line we multiply the first term in
+the first braket with first term in the second braket, and the second
+term (i.e. $1$) in the first braket with the second term in the second
+braket (i.e. the $\mu$ term); in the last line we use Trick 2.
+
+The base case $i = 1$ is true since $M_1$ is
+$(\epsilon_1, \delta_1)$-dp. $\square$
+
+To prove the advanced composition theorem, we start with some lemmas.
+
+**Claim 11**. If $p$ and $q$ are $\epsilon$-ind, then
+
+$$D(p || q) + D(q || p) \le \epsilon(e^\epsilon - 1).$$
+
+**Proof**. Since $p$ and $q$ are $\epsilon$-ind, we have
+$|\log p(x) - \log q(x)| \le \epsilon$ for all $x$. Let
+$S := \{x: p(x) > q(x)\}$. Then we have on
+
+$$\begin{aligned}
+D(p || q) + D(q || p) &= \int (p(x) - q(x)) (\log p(x) - \log q(x)) dx\\
+&= \int_S (p(x) - q(x)) (\log p(x) - \log q(x)) dx + \int_{S^c} (q(x) - p(x)) (\log q(x) - \log p(x)) dx\\
+&\le \epsilon(\int_S p(x) - q(x) dx + \int_{S^c} q(x) - p(x) dx)
+\end{aligned}$$
+
+Since on $S$ we have $q(x) \le p(x) \le e^\epsilon q(x)$, and on $S^c$
+we have $p(x) \le q(x) \le e^\epsilon p(x)$, we obtain
+
+$$D(p || q) + D(q || p) \le \epsilon \int_S (1 - e^{-\epsilon}) p(x) dx + \epsilon \int_{S^c} (e^{\epsilon} - 1) p(x) dx \le \epsilon (e^{\epsilon} - 1),$$
+
+where in the last step we use $e^\epsilon - 1 \ge 1 - e^{- \epsilon}$
+and $p(S) + p(S^c) = 1$. $\square$
+
+**Claim 12**. If $p$ and $q$ are $\epsilon$-ind, then
+
+$$D(p || q) \le a(\epsilon) \ge D(q || p),$$
+
+where
+
+$$a(\epsilon) = \epsilon (e^\epsilon - 1) 1_{\epsilon \le \log 2} + \epsilon 1_{\epsilon > \log 2} \le (\log 2)^{-1} \epsilon^2 1_{\epsilon \le \log 2} + \epsilon 1_{\epsilon > \log 2}. \qquad (6.98)$$
+
+**Proof**. Since $p$ and $q$ are $\epsilon$-ind, we have
+
+$$D(p || q) = \mathbb E_{\xi \sim p} \log {p(\xi) \over q(\xi)} \le \max_y {\log p(y) \over \log q(y)} \le \epsilon.$$
+
+Comparing the quantity in Claim 11 ($\epsilon(e^\epsilon - 1)$) with the
+quantity above ($\epsilon$), we arrive at the conclusion. $\square$
+
+**Claim 13 (Hoeffding\'s
+Inequality)**. Let $L_i$ be independent random variables with
+$|L_i| \le b$, and let $L = L_1 + ... + L_k$, then for $t > 0$,
+
+$$\mathbb P(L - \mathbb E L \ge t) \le \exp(- {t^2 \over 2 k b^2}).$$
+
+**Claim 14
+(Advanced Independent Composition Theorem)** ($\delta = 0$). Fix
+$0 < \beta < 1$. Let $M_1, ..., M_k$ be $\epsilon$-dp, then the
+independent composition $M$ of $M_{1 : k}$ is
+$(k a(\epsilon) + \sqrt{2 k \log \beta^{-1}} \epsilon, \beta)$-dp.
+
+**Remark**. By (6.98) we know that
+$k a(\epsilon) + \sqrt{2 k \log \beta^{-1}} \epsilon = \sqrt{2 k \log \beta^{-1}} \epsilon + k O(\epsilon^2)$
+when $\epsilon$ is sufficiently small.
+
+**Proof**. Let $p_i$, $q_i$, $p$ and $q$ be the laws of
+$M_i(x)$, $M_i(x')$, $M(x)$ and $M(x')$ respectively.
+
+$$\mathbb E L_i = D(p_i || q_i) \le a(\epsilon),$$
+
+where $L_i := L(p_i || q_i)$. Due to $\epsilon$-ind also have
+
+$$|L_i| \le \epsilon.$$
+
+Therefore, by Hoeffding\'s Inequality,
+
+$$\mathbb P(L - k a(\epsilon) \ge t) \le \mathbb P(L - \mathbb E L \ge t) \le \exp(- t^2 / 2 k \epsilon^2),$$
+
+where $L := \sum_i L_i = L(p || q)$.
+
+Plugging in $t = \sqrt{2 k \epsilon^2 \log \beta^{-1}}$, we have
+
+$$\mathbb P(L(p || q) \le k a(\epsilon) + \sqrt{2 k \epsilon^2 \log \beta^{-1}}) \ge 1 - \beta.$$
+
+Similarly we also have
+
+$$\mathbb P(L(q || p) \le k a(\epsilon) + \sqrt{2 k \epsilon^2 \log \beta^{-1}}) \ge 1 - \beta.$$
+
+By Claim 1 we arrive at the conclusion. $\square$
+
+**Claim 15 (Azuma\'s Inequality)**.
+Let $X_{0 : k}$ be a supermartingale. If $|X_i - X_{i - 1}| \le b$, then
+
+$$\mathbb P(X_k - X_0 \ge t) \le \exp(- {t^2 \over 2 k b^2}).$$
+
+Azuma\'s Inequality implies a slightly weaker version of Hoeffding\'s
+Inequality. To see this, let $L_{1 : k}$ be independent variables with
+$|L_i| \le b$. Let $X_i = \sum_{j = 1 : i} L_j - \mathbb E L_j$. Then
+$X_{0 : k}$ is a martingale, and
+
+$$| X_i - X_{i - 1} | = | L_i - \mathbb E L_i | \le 2 b,$$
+
+since $\|L_i\|_1 \le \|L_i\|_\infty$. Hence by Azuma\'s Inequality,
+
+$$\mathbb P(L - \mathbb E L \ge t) \le \exp(- {t^2 \over 8 k b^2}).$$
+
+Of course here we have made no assumption on $\mathbb E L_i$. If instead
+we have some bound for the expectation, say $|\mathbb E L_i| \le a$,
+then by the same derivation we have
+
+$$\mathbb P(L - \mathbb E L \ge t) \le \exp(- {t^2 \over 2 k (a + b)^2}).$$
+
+It is not hard to see what Azuma is to Hoeffding is like adaptive
+composition to independent composition. Indeed, we can use Azuma\'s
+Inequality to prove the Advanced Adaptive Composition Theorem for
+$\delta = 0$.
+
+**Claim 16
+(Advanced Adaptive Composition Theorem)** ($\delta = 0$). Let
+$\beta > 0$. Let $M_{1 : k}$ be $k$ mechanisms with independent noises
+such that for each $i$ and $y_{1 : i}$, $M_i(y_{1 : i})$ is
+$(\epsilon, 0)$-dp. Then the adpative composition of $M_{1 : k}$ is
+$(k a(\epsilon) + \sqrt{2 k \log \beta^{-1}} (\epsilon + a(\epsilon)), \beta)$-dp.
+
+ M(x)$
+and $\eta_{1 : k} \overset{d}{=} M(x')$, where $M$ is the adaptive
+composition of $M_{1 : k}$. Let $p_i$ (resp. $q_i$) be the law of
+$\xi_i | \xi_{< i}$ (resp. $\eta_i | \eta_{< i}$). Let $p^i$ (resp.
+$q^i$) be the law of $\xi_{\le i}$ (resp. $\eta_{\le i}$). We want to
+construct supermartingale $X$. To this end, let
+
+$$X_i = \log {p^i(\xi_{\le i}) \over q^i(\xi_{\le i})} - i a(\epsilon) $$
+
+We show that $(X_i)$ is a supermartingale:
+
+$$\begin{aligned}
+\mathbb E(X_i - X_{i - 1} | X_{i - 1}) &= \mathbb E \left(\log {p_i (\xi_i | \xi_{< i}) \over q_i (\xi_i | \xi_{< i})} - a(\epsilon) | \log {p^{i - 1} (\xi_{< i}) \over q^{i - 1} (\xi_{< i})}\right) \\
+&= \mathbb E \left( \mathbb E \left(\log {p_i (\xi_i | \xi_{< i}) \over q_i (\xi_i | \xi_{< i})} | \xi_{< i}\right) | \log {p^{i - 1} (\xi_{< i}) \over q^{i - 1} (\xi_{< i})}\right) - a(\epsilon) \\
+&= \mathbb E \left( D(p_i (\cdot | \xi_{< i}) || q_i (\cdot | \xi_{< i})) | \log {p^{i - 1} (\xi_{< i}) \over q^{i - 1} (\xi_{< i})}\right) - a(\epsilon) \\
+&\le 0,
+\end{aligned}$$
+
+since by Claim 12
+$D(p_i(\cdot | y_{< i}) || q_i(\cdot | y_{< i})) \le a(\epsilon)$ for
+all $y_{< i}$.
+
+Since
+
+$$| X_i - X_{i - 1} | = | \log {p_i(\xi_i | \xi_{< i}) \over q_i(\xi_i | \xi_{< i})} - a(\epsilon) | \le \epsilon + a(\epsilon),$$
+
+by Azuma\'s Inequality,
+
+$$\prob(\log {p^k(\xi_{1 : k}) \over q^k(\xi_{1 : k})} \ge k a(\epsilon) + t) \le \exp(- {t^2 \over 2 k (\epsilon + a(\epsilon))^2}). \qquad(6.99)$$
+
+Let $t = \sqrt{2 k \log \beta^{-1}} (\epsilon + a(\epsilon))$ we are
+done. $\square$
+
+**Claim 17
+(Advanced Independent Composition Theorem)**. Fix $0 < \beta < 1$. Let
+$M_1, ..., M_k$ be $(\epsilon, \delta)$-dp, then the independent
+composition $M$ of $M_{1 : k}$ is
+$(k a(\epsilon) + \sqrt{2 k \log \beta^{-1}} \epsilon, k \delta + \beta)$-dp.
+
+$ and
+$F_{1 : k}$ such that
+
+1. The laws $p_{i | E_i}$ and $q_{i | F_i}$ are $\epsilon$-ind.
+2. $\mathbb P(E_i), \mathbb P(F_i) \ge 1 - \delta$.
+
+Let $E := \bigcap E_i$ and $F := \bigcap F_i$, then they both have
+probability at least $1 - k \delta$, and $p_{i | E}$ and $q_{i | F}$ are
+$\epsilon$-ind.
+
+By Claim 14, $p_{|E}$ and $q_{|F}$ are
+$(\epsilon' := k a(\epsilon) + \sqrt{2 k \epsilon^2 \log \beta^{-1}}, \beta)$-ind.
+Let us shrink the bigger event between $E$ and $F$ so that they have
+equal probabilities. Then
+
+$$\begin{aligned}
+p (S) &\le p_{|E}(S) \mathbb P(E) + \mathbb P(E^c) \\
+&\le (e^{\epsilon'} q_{|F}(S) + \beta) \mathbb P(F) + k \delta\\
+&\le e^{\epsilon'} q(S) + \beta + k \delta.
+\end{aligned}$$
+
+$\square$
+
+**Claim 18
+(Advanced Adaptive Composition Theorem)**. Fix $0 < \beta < 1$. Let
+$M_{1 : k}$ be $k$ mechanisms with independent noises such that for each
+$i$ and $y_{1 : i}$, $M_i(y_{1 : i})$ is $(\epsilon, \delta)$-dp. Then
+the adpative composition of $M_{1 : k}$ is
+$(k a(\epsilon) + \sqrt{2 k \log \beta^{-1}} (\epsilon + a(\epsilon)), \beta + k \delta)$-dp.
+
+$ and
+$F_{1 : k}$ such that
+
+1. The laws $p_{i | E_i}(\cdot | y_{< i})$ and
+ $q_{i | F_i}(\cdot | y_{< i})$ are $\epsilon$-ind for all $y_{< i}$.
+2. $\mathbb P(E_i | y_{< i}), \mathbb P(F_i | y_{< i}) \ge 1 - \delta$
+ for all $y_{< i}$.
+
+Let $E := \bigcap E_i$ and $F := \bigcap F_i$, then they both have
+probability at least $1 - k \delta$, and $p_{i | E}(\cdot | y_{< i}$ and
+$q_{i | F}(\cdot | y_{< i})$ are $\epsilon$-ind.
+
+By Advanced Adaptive Composition Theorem ($\delta = 0$), $p_{|E}$ and
+$q_{|F}$ are
+$(\epsilon' := k a(\epsilon) + \sqrt{2 k \log \beta^{-1}} (\epsilon + a(\epsilon)), \beta)$-ind.
+
+The rest is the same as in the proof of Claim 17. $\square$
+
+Subsampling
+-----------
+
+Stochastic gradient descent is like gradient descent, but with random
+subsampling.
+
+Recall we have been considering databases in the space $Z^m$. Let
+$n < m$ be a positive integer,
+$\mathcal I := \{I \subset [m]: |I| = n\}$ be the set of subsets of
+$[m]$ of size $n$, and $\gamma$ a random subset sampled uniformly from
+$\mathcal I$. Let $r = {n \over m}$ which we call the subsampling rate.
+Then we may add a subsampling module to the noisy gradient descent
+algorithm (6.97) considered before
+
+$$\theta_{t} = \theta_{t - 1} - \alpha n^{-1} \sum_{i \in \gamma} \nabla_\theta h_\theta(x_i) |_{\theta = \theta_{t - 1}} + \zeta_t. \qquad (7)$$
+
+It turns out subsampling has an amplification effect on privacy.
+
+**Claim 19 (Ullman 2017)**. Fix
+$r \in [0, 1]$. Let $n \le m$ be two nonnegative integers with
+$n = r m$. Let $N$ be an $(\epsilon, \delta)$-dp machanism on $X^n$.
+Define mechanism $M$ on $X^m$ by
+
+$$M(x) = N(x_\gamma)$$
+
+Then $M$ is $(\log (1 + r(e^\epsilon - 1)), r \delta)$-dp.
+
+**Remark**. Some seem to cite
+Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith 2005 for this result, but
+it is not clear to me how it appears there.
+
+**Proof**. Let $x, x' \in X^n$ such that they differ by one
+row $x_i \neq x_i'$. Naturally we would like to consider the cases where
+the index $i$ is picked and the ones where it is not separately. Let
+$\mathcal I_\in$ and $\mathcal I_\notin$ be these two cases:
+
+$$\begin{aligned}
+\mathcal I_\in = \{J \subset \mathcal I: i \in J\}\\
+\mathcal I_\notin = \{J \subset \mathcal I: i \notin J\}\\
+\end{aligned}$$
+
+We will use these notations later. Let $A$ be the event
+$\{\gamma \ni i\}$.
+
+Let $p$ and $q$ be the laws of $M(x)$ and $M(x')$ respectively. We
+collect some useful facts about them. First due to $N$ being
+$(\epsilon, \delta)$-dp,
+
+$$p_{|A}(S) \le e^\epsilon q_{|A}(S) + \delta.$$
+
+Also,
+
+$$p_{|A}(S) \le e^\epsilon p_{|A^c}(S) + \delta.$$
+
+To see this, note that being conditional laws, $p_A$ and $p_{A^c}$ are
+averages of laws over $\mathcal I_\in$ and $\mathcal I_\notin$
+respectively:
+
+$$\begin{aligned}
+p_{|A}(S) = |\mathcal I_\in|^{-1} \sum_{I \in \mathcal I_\in} \mathbb P(N(x_I) \in S)\\
+p_{|A^c}(S) = |\mathcal I_\notin|^{-1} \sum_{J \in \mathcal I_\notin} \mathbb P(N(x_J) \in S).
+\end{aligned}$$
+
+Now we want to pair the $I$\'s in $\mathcal I_\in$ and $J$\'s in
+$\mathcal I_\notin$ so that they differ by one index only, which means
+$d(x_I, x_J) = 1$. Formally, this means we want to consider the set:
+
+$$\mathcal D := \{(I, J) \in \mathcal I_\in \times \mathcal I_\notin: |I \cap J| = n - 1\}.$$
+
+We may observe by trying out some simple cases that every
+$I \in \mathcal I_\in$ is paired with $n$ elements in
+$\mathcal I_\notin$, and every $J \in \mathcal I_\notin$ is paired with
+$m - n$ elements in $\mathcal I_\in$. Therefore
+
+$$p_{|A}(S) = |\mathcal D|^{-1} \sum_{(I, J) \in \mathcal D} \mathbb P(N(x_I \in S)) \le |\mathcal D|^{-1} \sum_{(I, J) \in \mathcal D} (e^\epsilon \mathbb P(N(x_J \in S)) + \delta) = e^\epsilon p_{|A^c} (S) + \delta.$$
+
+Since each of the $m$ indices is picked independently with probability
+$r$, we have
+
+$$\mathbb P(A) = r.$$
+
+Let $t \in [0, 1]$ to be determined. We may write
+
+$$\begin{aligned}
+p(S) &= r p_{|A} (S) + (1 - r) p_{|A^c} (S)\\
+&\le r(t e^\epsilon q_{|A}(S) + (1 - t) e^\epsilon q_{|A^c}(S) + \delta) + (1 - r) q_{|A^c} (S)\\
+&= rte^\epsilon q_{|A}(S) + (r(1 - t) e^\epsilon + (1 - r)) q_{|A^c} (S) + r \delta\\
+&= te^\epsilon r q_{|A}(S) + \left({r \over 1 - r}(1 - t) e^\epsilon + 1\right) (1 - r) q_{|A^c} (S) + r \delta \\
+&\le \left(t e^\epsilon \wedge \left({r \over 1 - r} (1 - t) e^\epsilon + 1\right)\right) q(S) + r \delta. \qquad (7.5)
+\end{aligned}$$
+
+We can see from the last line that the best bound we can get is when
+
+$$t e^\epsilon = {r \over 1 - r} (1 - t) e^\epsilon + 1.$$
+
+Solving this equation we obtain
+
+$$t = r + e^{- \epsilon} - r e^{- \epsilon}$$
+
+and plugging this in (7.5) we have
+
+$$p(S) \le (1 + r(e^\epsilon - 1)) q(S) + r \delta.$$
+
+$\square$
+
+Since $\log (1 + x) < x$ for $x > 0$, we can rewrite the conclusion of
+the Claim to $(r(e^\epsilon - 1), r \delta)$-dp. Further more, if
+$\epsilon < \alpha$ for some $\alpha$, we can rewrite it as
+$(r \alpha^{-1} (e^\alpha - 1) \epsilon, r \delta)$-dp or
+$(O(r \epsilon), r \delta)$-dp.
+
+Let $\epsilon < 1$. We see that if the mechanism $N$ is
+$(\epsilon, \delta)$-dp on $Z^n$, then $M$ is
+$(2 r \epsilon, r \delta)$-dp, and if we run it over $k / r$
+minibatches, by Advanced Adaptive Composition theorem, we have
+$(\sqrt{2 k r \log \beta^{-1}} \epsilon + 2 k r \epsilon^2, k \delta + \beta)$-dp.
+
+This is better than the privacy guarantee without subsampling, where we
+run over $k$ iterations and obtain
+$(\sqrt{2 k \log \beta^{-1}} \epsilon + 2 k \epsilon^2, k \delta + \beta)$-dp.
+So with subsampling we gain an extra $\sqrt r$ in the $\epsilon$-part of
+the privacy guarantee. But, smaller subsampling rate means smaller
+minibatch size, which would result in bigger variance, so there is a
+trade-off here.
+
+Finally we define the differentially private stochastic gradient descent
+(DP-SGD) with the Gaussian mechanism
+(Abadi-Chu-Goodfellow-McMahan-Mironov-Talwar-Zhang 2016), which is (7)
+with the noise specialised to Gaussian and an added clipping operation
+to bound to sensitivity of the query to a chosen $C$:
+
+$$\theta_{t} = \theta_{t - 1} - \alpha \left(n^{-1} \sum_{i \in \gamma} \nabla_\theta h_\theta(x_i) |_{\theta = \theta_{t - 1}}\right)_{\text{Clipped at }C / 2} + N(0, \sigma^2 C^2 I),$$
+
+where
+
+$$y_{\text{Clipped at } \alpha} := y / (1 \vee {\|y\|_2 \over \alpha})$$
+
+is $y$ clipped to have norm at most $\alpha$.
+
+Note that the clipping in DP-SGD is much stronger than making the query
+have sensitivity $C$. It makes the difference between the query results
+of two *arbitrary* inputs bounded by $C$, rather than *neighbouring*
+inputs.
+
+In Part 2 we will use the tools developed above to discuss the privacy
+guarantee for DP-SGD, among other things.
+
+References
+----------
+
+- Abadi, Martín, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
+ Mironov, Kunal Talwar, and Li Zhang. "Deep Learning with
+ Differential Privacy." Proceedings of the 2016 ACM SIGSAC Conference
+ on Computer and Communications Security - CCS'16, 2016, 308--18.
+ <https://doi.org/10.1145/2976749.2978318>.
+- Dwork, Cynthia, and Aaron Roth. "The Algorithmic Foundations of
+ Differential Privacy." Foundations and Trends® in Theoretical
+ Computer Science 9, no. 3--4 (2013): 211--407.
+ <https://doi.org/10.1561/0400000042>.
+- Dwork, Cynthia, Guy N. Rothblum, and Salil Vadhan. "Boosting and
+ Differential Privacy." In 2010 IEEE 51st Annual Symposium on
+ Foundations of Computer Science, 51--60. Las Vegas, NV, USA:
+ IEEE, 2010. <https://doi.org/10.1109/FOCS.2010.12>.
+- Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya
+ Raskhodnikova, and Adam Smith. "What Can We Learn Privately?" In
+ 46th Annual IEEE Symposium on Foundations of Computer Science
+ (FOCS'05). Pittsburgh, PA, USA: IEEE, 2005.
+ <https://doi.org/10.1109/SFCS.2005.1>.
+- Murtagh, Jack, and Salil Vadhan. "The Complexity of Computing the
+ Optimal Composition of Differential Privacy." In Theory of
+ Cryptography, edited by Eyal Kushilevitz and Tal Malkin,
+ 9562:157--75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.
+ <https://doi.org/10.1007/978-3-662-49096-9_7>.
+- Ullman, Jonathan. "Solution to CS7880 Homework 1.", 2017.
+ <http://www.ccs.neu.edu/home/jullman/cs7880s17/HW1sol.pdf>
+- Vadhan, Salil. "The Complexity of Differential Privacy." In
+ Tutorials on the Foundations of Cryptography, edited by Yehuda
+ Lindell, 347--450. Cham: Springer International Publishing, 2017.
+ <https://doi.org/10.1007/978-3-319-57048-8_7>.