diff options
author | Yuchen Pei <me@ypei.me> | 2019-03-20 11:07:49 +0100 |
---|---|---|
committer | Yuchen Pei <me@ypei.me> | 2019-03-20 11:07:49 +0100 |
commit | ad0ca1c4a77cd1f367ba2eb9ba0b4bef707f71c1 (patch) | |
tree | 670776c6be21193ac37e44ee620e8b4df8c582e1 | |
parent | 2474c5084d383433a69c6fde3fb67713cfc25cf8 (diff) |
minor fix
-rw-r--r-- | posts/2019-03-13-a-tail-of-two-densities.md | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/posts/2019-03-13-a-tail-of-two-densities.md b/posts/2019-03-13-a-tail-of-two-densities.md index 6467a5f..dea9d1f 100644 --- a/posts/2019-03-13-a-tail-of-two-densities.md +++ b/posts/2019-03-13-a-tail-of-two-densities.md @@ -703,7 +703,7 @@ $$\sigma > \epsilon^{-1} (\sqrt{\log e^\alpha \delta^{-2}}) S_f$$ or -$$\sigma > \epsilon^{-1} (\sqrt{1 + \alpha} \vee \sqrt{(\log (2 \pi)^{-1} e^\alpha \delta^{-2})_+}).$$ +$$\sigma > \epsilon^{-1} (\sqrt{1 + \alpha} \vee \sqrt{(\log (2 \pi)^{-1} e^\alpha \delta^{-2})_+}) S_f.$$ The second bound is similar to and slightly better than the one in Theorem A.1 of Dwork-Roth 2013, where $\alpha = 1$: |