aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorYuchen Pei <me@ypei.me>2019-03-14 11:57:28 +0100
committerYuchen Pei <me@ypei.me>2019-03-14 11:57:28 +0100
commitb54d76a78c4c18e8a59fa6d1771e1709b694980f (patch)
treee7b2040c60afa99a970522a61806ce6c0fdf1b4a
parent8aa39aca94320b2e192e0a46099bc339d4a55eb8 (diff)
minor
-rw-r--r--posts/2019-03-14-great-but-manageable-expectations.md6
1 files changed, 3 insertions, 3 deletions
diff --git a/posts/2019-03-14-great-but-manageable-expectations.md b/posts/2019-03-14-great-but-manageable-expectations.md
index be7bf81..39c3487 100644
--- a/posts/2019-03-14-great-but-manageable-expectations.md
+++ b/posts/2019-03-14-great-but-manageable-expectations.md
@@ -215,7 +215,7 @@ $(\lambda, {1 \over \lambda - 1} \log (1 + r(e^{(\lambda - 1) \rho} - 1)))$-rdp.
To prove Claim 24, we need a useful lemma:
-{#Claim 25}**Claim 25**. Let $p_{1 : n}$ and $q_{1 : n}$ be
+**Claim 25**. Let $p_{1 : n}$ and $q_{1 : n}$ be
nonnegative integers, and $\lambda > 1$. Then
$${(\sum p_i)^\lambda \over (\sum q_i)^{\lambda - 1}} \le \sum_i {p_i^\lambda \over q_i^{\lambda - 1}}. \qquad (8)$$
@@ -546,9 +546,9 @@ least when $\lambda$ is an integer.
decode how `_compute_log_a_frac` computes the cumulant (or an upper
bound of it) in this case
- The function `_compute_delta` computes $\delta$s for a list of
- $\lambda$s and $\kappa$s using Item 1 of Claim 3 and return the
+ $\lambda$s and $\kappa$s using Item 1 of Claim 25 and return the
smallest one, and the function `_compute_epsilon` computes epsilon
- uses Item 3 in the same way.
+ uses Item 3 in Claim 25 in the same way.
In `optimizers`, among other things, the DP-SGD with Gaussian mechanism
is implemented in `dp_optimizer.py` and `gaussian_query.py`. See the