diff options
| author | Yuchen Pei <me@ypei.me> | 2019-02-14 10:29:45 +0100 | 
|---|---|---|
| committer | Yuchen Pei <me@ypei.me> | 2019-02-14 10:29:45 +0100 | 
| commit | c55f09dfcb38ec850d2dc839d8225a4ab1b01fe0 (patch) | |
| tree | 4521a23adb2e6431e99f62fb67963fed6361ce55 | |
| parent | 2a9a13e5347434860f1ac2c5671574d19f9c4129 (diff) | |
minor
| -rw-r--r-- | posts/2019-02-14-raise-your-elbo.md | 2 | 
1 files changed, 1 insertions, 1 deletions
| diff --git a/posts/2019-02-14-raise-your-elbo.md b/posts/2019-02-14-raise-your-elbo.md index 18c085b..5b789aa 100644 --- a/posts/2019-02-14-raise-your-elbo.md +++ b/posts/2019-02-14-raise-your-elbo.md @@ -550,7 +550,7 @@ this section). But now both $\pi$ and $\eta$ are random variables. Let  the prior distribution $p(\pi)$ is Dirichlet with parameter  $(\alpha, \alpha, ..., \alpha)$. Let the prior $p(\eta_k)$ be the  conjugate prior of $(x | \eta_k)$, with parameter $\beta$, we will see -later in this section that the posterior $q(\eta_k)$ has belongs to the +later in this section that the posterior $q(\eta_k)$ belongs to the  same family as $p(\eta_k)$. Represented in a plate notations, a fully  Bayesian mixture model looks like: | 
