diff options
| author | Yuchen Pei <me@ypei.me> | 2021-06-24 17:50:34 +1000 | 
|---|---|---|
| committer | Yuchen Pei <me@ypei.me> | 2021-06-24 17:50:34 +1000 | 
| commit | 11011d7c373c655830053b155eeaf632c2658ac7 (patch) | |
| tree | 2e7ae85b013041fef7e733ddb4c74dd197c17f56 /pages/notations.org | |
| parent | 4f5ad1a70089365c5b6949d06386930433e09193 (diff) | |
Updated.
- added mathjax (freed)
- added rss.py
- updated publish.el
- etc.
Diffstat (limited to 'pages/notations.org')
| -rw-r--r-- | pages/notations.org | 53 | 
1 files changed, 53 insertions, 0 deletions
| diff --git a/pages/notations.org b/pages/notations.org new file mode 100644 index 0000000..691a9d6 --- /dev/null +++ b/pages/notations.org @@ -0,0 +1,53 @@ +#+title: List of Notations + +#+date: 2019-03-15 + +Here I list meanings of notations that may have not been explained +elsewhere. + +- \(\text{ty}\): type. Given a word \(w \in [n]^\ell\), +  \(\text{ty} w = (m_1, m_2, ..., m_n)\) where \(m_i\) is the number of +  \(i\)'s in \(w\). For example +  \(\text{ty} (1, 2, 2, 1, 4, 2) = (2, 3, 0, 1)\). The definition of +  \(\text{ty} T\) for a tableau \(T\) is similar. +- \([n]\): for \(n \in \mathbb N_{>0}\), \([n]\) stands for the set +  \(\{1, 2, ..., n\}\). +- \(i : j\): for \(i, j \in \mathbb Z\), \(i : j\) stands for the set +  \(\{i, i + 1, ..., j\}\), or the sequence \((i, i + 1, ..., j)\), +  depending on the context. +- \(k = i : j\): means \(k\) iterates over \(i\), \(i + 1\),..., \(j\). +  For example \(\sum_{k = 1 : n} a_k := \sum_{k = 1}^n a_k\). +- \(x_{i : j}\): stands for the set \(\{x_k: k = i : j\}\) or the +  sequence \((x_i, x_{i + 1}, ..., x_j)\), depending on the context. So +  are notations like \(f(i : j)\), \(y^{i : j}\) etc. +- \(\mathbb N\): the set of natural numbers / nonnegative integer +  numbers \(\{0, 1, 2,...\}\), whereas +- \(\mathbb N_{>0}\) or \(\mathbb N^+\): Are the set of positive integer +  numbers. +- \(x^w\): when both \(x\) and \(w\) are tuples of objects, this means +  \(\prod_i x_{w_i}\). For example say \(w = (1, 2, 2, 1, 4, 2)\), and +  \(x = x_{1 : 7}\), then \(x^w = x_1^2 x_2^3 x_4\). +- \(LHS\), LHS, \(RHS\), RHS: left hand side and right hand side of a +  formula +- \(e_i\): the \(i\)th standard basis in a vector space: +  \(e_i = (0, 0, ..., 0, 1, 0, 0, ...)\) where the sequence is finite or +  infinite depending on the dimension of the vector space and the \(1\) +  is the \(i\)th entry and all other entries are \(0\). +- \(1_{A}(x)\) where \(A\) is a set: an indicator function, which +  evaluates to \(1\) if \(x \in A\), and \(0\) otherwise. +- \(1_{p}\): an indicator function, which evaluates to \(1\) if the +  predicate \(p\) is true and \(0\) otherwise. Example: \(1_{x \in A}\), +  same as \(1_A(x)\). +- \(\xi \sim p\): the random variable \(xi\) is distributed according to +  the probability density function / probability mass function / +  probability measure \(p\). +- \(\xi \overset{d}{=} \eta\): the random variables \(\xi\) and \(\eta\) +  have the same distribution. +- \(\mathbb E f(\xi)\): expectation of \(f(\xi)\). +- \(\mathbb P(A)\): probability of event \(A\). +- \(a \wedge b\): \(\min\{a, b\}\). +- \(a \vee b\): \(\max\{a, b\}\). +- \((\alpha)_+\): the positive part of \(\alpha\), +  i.e. \(\alpha \vee 0\). +- \((\alpha)_-\): the negative part of \(\alpha\), +  i.e. \((- \alpha)_+\). | 
