diff options
-rw-r--r-- | assets/css/default.css | 14 | ||||
-rw-r--r-- | engine/engine.py | 2 | ||||
-rw-r--r-- | posts/2019-03-13-a-tail-of-two-densities.md | 2 |
3 files changed, 16 insertions, 2 deletions
diff --git a/assets/css/default.css b/assets/css/default.css index 40473b3..4af6e4c 100644 --- a/assets/css/default.css +++ b/assets/css/default.css @@ -8,6 +8,20 @@ nav { float: right; } +nav#TOC:before { + content: "Table of Contents"; +} + +nav#TOC{ + margin: 1rem; +} + +/* +nav#TOC li{ + list-style-type: none; +} +*/ + span.logo { float: left; } diff --git a/engine/engine.py b/engine/engine.py index c60cedc..f6d4be4 100644 --- a/engine/engine.py +++ b/engine/engine.py @@ -21,7 +21,7 @@ def item_from_path(path): res.setdefault('name', os.path.basename(x)) if ext in ['.md', '.markdown']: logging.info('Converting {}...'.format(path)) - res['body'] = pypandoc.convert_text(matchres.group(2), 'html', format='md', extra_args=['--mathjax']) + res['body'] = pypandoc.convert_text(matchres.group(2), 'html', format='md', extra_args=['--mathjax', '-s', '--toc']) elif ext == '.wiki': logging.info('Converting {}...'.format(path)) res['body'] = pypandoc.convert_text(matchres.group(2), 'html', format='vimwiki') diff --git a/posts/2019-03-13-a-tail-of-two-densities.md b/posts/2019-03-13-a-tail-of-two-densities.md index 533835d..db03a3c 100644 --- a/posts/2019-03-13-a-tail-of-two-densities.md +++ b/posts/2019-03-13-a-tail-of-two-densities.md @@ -79,7 +79,7 @@ where $p$ and $q$ are the laws of the outputs of a randomised functions on two very similar inputs. Moreover, to make matters even simpler, only three situations need to be considered: -1. (General case) $q$ is in the form of $q(y) = p(y + \Delta)$ for some bounded $\Delta$. +1. (General case) $q$ is in the form of $q(y) = p(y + \Delta)$ for some bounded constant $\Delta$. 2. (Compositions) $p$ and $q$ are combinatorial or sequential compositions of some simpler $p_i$'s and $q_i$'s respectively 3. (Subsampling) $p$ and $q$ are mixtures / averages of some simpler $p_i$'s and $q_i$'s respectively |