diff options
| -rw-r--r-- | posts/2019-03-13-a-tail-of-two-densities.md | 2 | 
1 files changed, 1 insertions, 1 deletions
diff --git a/posts/2019-03-13-a-tail-of-two-densities.md b/posts/2019-03-13-a-tail-of-two-densities.md index 6467a5f..dea9d1f 100644 --- a/posts/2019-03-13-a-tail-of-two-densities.md +++ b/posts/2019-03-13-a-tail-of-two-densities.md @@ -703,7 +703,7 @@ $$\sigma > \epsilon^{-1} (\sqrt{\log e^\alpha \delta^{-2}}) S_f$$  or -$$\sigma > \epsilon^{-1} (\sqrt{1 + \alpha} \vee \sqrt{(\log (2 \pi)^{-1} e^\alpha \delta^{-2})_+}).$$ +$$\sigma > \epsilon^{-1} (\sqrt{1 + \alpha} \vee \sqrt{(\log (2 \pi)^{-1} e^\alpha \delta^{-2})_+}) S_f.$$  The second bound is similar to and slightly better than the one in  Theorem A.1 of Dwork-Roth 2013, where $\alpha = 1$:  | 
