aboutsummaryrefslogtreecommitdiff
path: root/pages
diff options
context:
space:
mode:
Diffstat (limited to 'pages')
-rw-r--r--pages/notations.md48
1 files changed, 48 insertions, 0 deletions
diff --git a/pages/notations.md b/pages/notations.md
new file mode 100644
index 0000000..2dac4fd
--- /dev/null
+++ b/pages/notations.md
@@ -0,0 +1,48 @@
+---
+date: 2019-03-15
+title: List of Notations
+template: default
+---
+
+Here I list meanings of notations that may have not been explained
+elsewhere.
+
+- $\text{ty}$: type. Given a word $w \in [n]^\ell$,
+ $\ty w = (m_1, m_2, ..., m_n)$ where $m_i$ is the number of $i$\'s
+ in $w$. For example $\ty (1, 2, 2, 1, 4, 2) = (2, 3, 0, 1)$. The
+ definition of $\ty T$ for a tableau $T$ is similar.
+- $[n]$: for $n \in \mathbb N_{>0}$, $[n]$ stands for the set
+ $\{1, 2, ..., n\}$.
+- $i : j$: for $i, j \in \intg$, $i : j$ stands for the set
+ $\{i, i + 1, ..., j\}$, or the sequence $(i, i + 1, ..., j)$,
+ depending on the context.
+- $k = i : j$: means $k$ iterates over $i$, $i + 1$,\..., $j$. For
+ example $\sum_{k = 1 : n} a_k := \sum_{k = 1}^n a_k$.
+- $x_{i : j}$: stands for the set $\{x_k: k = i : j\}$ or the sequence
+ $(x_i, x_{i + 1}, ..., x_j)$, depending on the context. So are
+ notations like $f(i : j)$, $y^{i : j}$ etc.
+- $\mathbb N$: the set of natural numbers / nonnegative integer
+ numbers $\{0, 1, 2,...\}$, whereas
+- $\mathbb N_{>0}$ or $\mathbb N^+$: Are the set of positive integer
+ numbers.
+- $x^w$: when both $x$ and $w$ are tuples of objects, this means
+ $\prod_i x_{w_i}$. For example say $w = (1, 2, 2, 1, 4, 2)$, and
+ $x = x_{1 : 7}$, then $x^w = x_1^2 x_2^3 x_4$.
+- $LHS$, LHS, $RHS$, RHS: left hand side and right hand side of a
+ formula
+- $e_i$: the $i$th standard basis in a vector space:
+ $e_i = (0, 0, ..., 0, 1, 0, 0, ...)$ where the sequence is finite or
+ infinite depending on the dimension of the vector space and the $1$
+ is the $i$th entry and all other entries are $0$.
+- $1_{A}(x)$ where $A$ is a set: an indicator function, which
+ evaluates to $1$ if $x \in A$, and $0$ otherwise.
+- $1_{p}$: an indicator function, which evaluates to $1$ if the
+ predicate $p$ is true and $0$ otherwise. Example: $1_{x \in A}$,
+ same as $1_A(x)$.
+- $\xi \sim p$: the random variable $xi$ is distributed according to
+ the probability density function / probability mass function /
+ probability measure $p$.
+- $\xi \overset{d}{=} \eta$: the random variables $\xi$ and $\eta$
+ have the same distribution.
+- $\mathbb E f(\xi)$: expectation of $f(\xi)$.
+- $\mathbb P(A)$: probability of event $A$.