diff options
Diffstat (limited to 'site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html')
-rw-r--r-- | site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html | 32 |
1 files changed, 32 insertions, 0 deletions
diff --git a/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html b/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html new file mode 100644 index 0000000..b262b20 --- /dev/null +++ b/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html @@ -0,0 +1,32 @@ +<!doctype html> +<html lang="en"> + <head> + <meta charset="utf-8"> + <title>Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms</title> + <link rel="stylesheet" href="../assets/css/default.css" /> + <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> + </head> + <body> + <header> + <span class="logo"> + <a href="../blog.html">Blog</a> + </span> + <nav> + <a href="../index.html">About</a><a href="../postlist.html">All posts</a><a href="../blog-feed.xml">Feed</a> + </nav> + </header> + + <div class="main"> + <div class="bodyitem"> + <h2> Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms </h2> + <p>Posted on 2014-04-01</p> + <p>In <a href="http://link.springer.com/article/10.1007/s10801-014-0505-x">this paper</a> a symmetry property analogous to the well known symmetry property of the normal Robinson-Schensted algorithm has been shown for the \(q\)-weighted Robinson-Schensted algorithm. The proof uses a generalisation of the growth diagram approach introduced by Fomin. This approach, which uses “growth graphs”, can also be applied to a wider class of insertion algorithms which have a branching structure.</p> +<figure> +<img src="../assets/resources/1423graph.jpg" alt="Growth graph of q-RS for 1423" /><figcaption>Growth graph of q-RS for 1423</figcaption> +</figure> +<p>Above is the growth graph of the \(q\)-weighted Robinson-Schensted algorithm for the permutation \({1 2 3 4\choose1 4 2 3}\).</p> + + </div> + </div> + </body> +</html> |