blob: b262b204f09a11e0368b511b27b1912dba341ef7 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms</title>
<link rel="stylesheet" href="../assets/css/default.css" />
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
</head>
<body>
<header>
<span class="logo">
<a href="../blog.html">Blog</a>
</span>
<nav>
<a href="../index.html">About</a><a href="../postlist.html">All posts</a><a href="../blog-feed.xml">Feed</a>
</nav>
</header>
<div class="main">
<div class="bodyitem">
<h2> Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms </h2>
<p>Posted on 2014-04-01</p>
<p>In <a href="http://link.springer.com/article/10.1007/s10801-014-0505-x">this paper</a> a symmetry property analogous to the well known symmetry property of the normal Robinson-Schensted algorithm has been shown for the \(q\)-weighted Robinson-Schensted algorithm. The proof uses a generalisation of the growth diagram approach introduced by Fomin. This approach, which uses “growth graphs”, can also be applied to a wider class of insertion algorithms which have a branching structure.</p>
<figure>
<img src="../assets/resources/1423graph.jpg" alt="Growth graph of q-RS for 1423" /><figcaption>Growth graph of q-RS for 1423</figcaption>
</figure>
<p>Above is the growth graph of the \(q\)-weighted Robinson-Schensted algorithm for the permutation \({1 2 3 4\choose1 4 2 3}\).</p>
</div>
</div>
</body>
</html>
|