aboutsummaryrefslogtreecommitdiff
path: root/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html
diff options
context:
space:
mode:
Diffstat (limited to 'site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html')
-rw-r--r--site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html32
1 files changed, 32 insertions, 0 deletions
diff --git a/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html b/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html
new file mode 100644
index 0000000..b262b20
--- /dev/null
+++ b/site/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html
@@ -0,0 +1,32 @@
+<!doctype html>
+<html lang="en">
+ <head>
+ <meta charset="utf-8">
+ <title>Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms</title>
+ <link rel="stylesheet" href="../assets/css/default.css" />
+ <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
+ </head>
+ <body>
+ <header>
+ <span class="logo">
+ <a href="../blog.html">Blog</a>
+ </span>
+ <nav>
+ <a href="../index.html">About</a><a href="../postlist.html">All posts</a><a href="../blog-feed.xml">Feed</a>
+ </nav>
+ </header>
+
+ <div class="main">
+ <div class="bodyitem">
+ <h2> Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms </h2>
+ <p>Posted on 2014-04-01</p>
+ <p>In <a href="http://link.springer.com/article/10.1007/s10801-014-0505-x">this paper</a> a symmetry property analogous to the well known symmetry property of the normal Robinson-Schensted algorithm has been shown for the \(q\)-weighted Robinson-Schensted algorithm. The proof uses a generalisation of the growth diagram approach introduced by Fomin. This approach, which uses “growth graphs”, can also be applied to a wider class of insertion algorithms which have a branching structure.</p>
+<figure>
+<img src="../assets/resources/1423graph.jpg" alt="Growth graph of q-RS for 1423" /><figcaption>Growth graph of q-RS for 1423</figcaption>
+</figure>
+<p>Above is the growth graph of the \(q\)-weighted Robinson-Schensted algorithm for the permutation \({1 2 3 4\choose1 4 2 3}\).</p>
+
+ </div>
+ </div>
+ </body>
+</html>