aboutsummaryrefslogtreecommitdiff
path: root/site-from-md/posts/2014-04-01-q-robinson-schensted-symmetry-paper.html
blob: 215183b11b19991d0f8bafbeee53ed2f021eafd8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
<!doctype html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms</title>
        <link rel="stylesheet" href="../assets/css/default.css" />
        <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
        <script src="../assets/js/analytics.js" type="text/javascript"></script>
    </head>
    <body>
        <header>
            <span class="logo">
                <a href="../blog.html">Yuchen's Blog</a>
            </span>
            <nav>
                <a href="../index.html">About</a><a href="../postlist.html">All posts</a><a href="../blog-feed.xml">Feed</a>
            </nav>
        </header>

        <div class="main">
            <div class="bodyitem">
                <h2> Symmetry property of \(q\)-weighted Robinson-Schensted algorithms and branching algorithms </h2>
                <p>Posted on 2014-04-01</p>
                    <!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
  <meta charset="utf-8" />
  <meta name="generator" content="pandoc" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
  <title>Untitled</title>
  <style>
      code{white-space: pre-wrap;}
      span.smallcaps{font-variant: small-caps;}
      span.underline{text-decoration: underline;}
      div.column{display: inline-block; vertical-align: top; width: 50%;}
  </style>
  <!--[if lt IE 9]>
    <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
  <![endif]-->
</head>
<body>
<p>In <a href="http://link.springer.com/article/10.1007/s10801-014-0505-x">this paper</a> a symmetry property analogous to the well known symmetry property of the normal Robinson-Schensted algorithm has been shown for the \(q\)-weighted Robinson-Schensted algorithm. The proof uses a generalisation of the growth diagram approach introduced by Fomin. This approach, which uses “growth graphs”, can also be applied to a wider class of insertion algorithms which have a branching structure.</p>
<figure>
<img src="../assets/resources/1423graph.jpg" alt="Growth graph of q-RS for 1423" /><figcaption>Growth graph of q-RS for 1423</figcaption>
</figure>
<p>Above is the growth graph of the \(q\)-weighted Robinson-Schensted algorithm for the permutation \({1 2 3 4\choose1 4 2 3}\).</p>
</body>
</html>

            </div>
        </div>
    </body>
</html>