1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>AMS review of 'Double Macdonald polynomials as the stable limit of Macdonald superpolynomials' by Blondeau-Fournier, Lapointe and Mathieu</title>
<link rel="stylesheet" href="../assets/css/default.css" />
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script src="../assets/js/analytics.js" type="text/javascript"></script>
</head>
<body>
<header>
<span class="logo">
<a href="../blog.html">Yuchen's Blog</a>
</span>
<nav>
<a href="../index.html">About</a><a href="../postlist.html">All posts</a><a href="../blog-feed.xml">Feed</a>
</nav>
</header>
<div class="main">
<div class="bodyitem">
<h2> AMS review of 'Double Macdonald polynomials as the stable limit of Macdonald superpolynomials' by Blondeau-Fournier, Lapointe and Mathieu </h2>
<p>Posted on 2015-07-15</p>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Untitled</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
</style>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
</head>
<body>
<p>A Macdonald superpolynomial (introduced in [O. Blondeau-Fournier et al., Lett. Math. Phys. <span class="bf">101</span> (2012), no. 1, 27–47; <a href="http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=2935476&loc=fromrevtext">MR2935476</a>; J. Comb. <span class="bf">3</span> (2012), no. 3, 495–561; <a href="http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=3029444&loc=fromrevtext">MR3029444</a>]) in \(N\) Grassmannian variables indexed by a superpartition \(\Lambda\) is said to be stable if \({m (m + 1) \over 2} \ge |\Lambda|\) and \(N \ge |\Lambda| - {m (m - 3) \over 2}\) , where \(m\) is the fermionic degree. A stable Macdonald superpolynomial (corresponding to a bisymmetric polynomial) is also called a double Macdonald polynomial (dMp). The main result of this paper is the factorisation of a dMp into plethysms of two classical Macdonald polynomials (Theorem 5). Based on this result, this paper</p>
<ol type="1">
<li><p>shows that the dMp has a unique decomposition into bisymmetric monomials;</p></li>
<li><p>calculates the norm of the dMp;</p></li>
<li><p>calculates the kernel of the Cauchy-Littlewood-type identity of the dMp;</p></li>
<li><p>shows the specialisation of the aforementioned factorisation to the Jack, Hall-Littlewood and Schur cases. One of the three Schur specialisations, denoted as \(s_{\lambda, \mu}\), also appears in (7) and (9) below;</p></li>
<li><p>defines the \(\omega\) -automorphism in this setting, which was used to prove an identity involving products of four Littlewood-Richardson coefficients;</p></li>
<li><p>shows an explicit evaluation of the dMp motivated by the most general evaluation of the usual Macdonald polynomials;</p></li>
<li><p>relates dMps with the representation theory of the hyperoctahedral group \(B_n\) via the double Kostka coefficients (which are defined as the entries of the transition matrix from the bisymmetric Schur functions \(s_{\lambda, \mu}\) to the modified dMps);</p></li>
<li><p>shows that the double Kostka coefficients have the positivity and the symmetry property, and can be written as sums of products of the usual Kostka coefficients;</p></li>
<li><p>defines an operator \(\nabla^B\) as an analogue of the nabla operator \(\nabla\) introduced in [F. Bergeron and A. M. Garsia, in <em>Algebraic methods and \(q\)-special functions</em> (Montréal, QC, 1996), 1–52, CRM Proc. Lecture Notes, 22, Amer. Math. Soc., Providence, RI, 1999; <a href="http://www.ams.org/mathscinet/search/publdoc.html?r=1&pg1=MR&s1=1726826&loc=fromrevtext">MR1726826</a>]. The action of \(\nabla^B\) on the bisymmetric Schur function \(s_{\lambda, \mu}\) yields the dimension formula \((h + 1)^r\) for the corresponding representation of \(B_n\) , where \(h\) and \(r\) are the Coxeter number and the rank of \(B_n\) , in the same way that the action of \(\nabla\) on the \(n\) th elementary symmetric function leads to the same formula for the group of type \(A_n\) .</p></li>
</ol>
<p>Copyright notice: This review is published at http://www.ams.org/mathscinet-getitem?mr=3306078, its copyright owned by the AMS.</p>
</body>
</html>
</div>
</div>
</body>
</html>
|