aboutsummaryrefslogtreecommitdiff
path: root/site/posts/2013-06-01-q-robinson-schensted-paper.html
blob: b8f9e3d4b87a83d826aa0f1e7d5ebb7ac1bcf6f9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
<!doctype html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>A \(q\)-weighted Robinson-Schensted algorithm</title>
        <link rel="stylesheet" href="../assets/css/default.css" />
        <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
    </head>
    <body>
        <header>
            <span class="logo">
                <a href="../blog.html">Blog</a>
            </span>
            <nav>
                <a href="../index.html">About</a><a href="../postlist.html">All posts</a><a href="../blog-feed.xml">Feed</a>
            </nav>
        </header>

        <div class="main">
            <div class="bodyitem">
                <h2> A \(q\)-weighted Robinson-Schensted algorithm </h2>
                <p>Posted on 2013-06-01</p>
                    <p>In <a href="https://projecteuclid.org/euclid.ejp/1465064320">this paper</a> with <a href="http://www.bristol.ac.uk/maths/people/neil-m-oconnell/">Neil</a> we construct a \(q\)-version of the Robinson-Schensted algorithm with column insertion. Like the <a href="http://en.wikipedia.org/wiki/Robinson–Schensted_correspondence">usual RS correspondence</a> with column insertion, this algorithm could take words as input. Unlike the usual RS algorithm, the output is a set of weighted pairs of semistandard and standard Young tableaux \((P,Q)\) with the same shape. The weights are rational functions of indeterminant \(q\).</p>
<p>If \(q\in[0,1]\), the algorithm can be considered as a randomised RS algorithm, with 0 and 1 being two interesting cases. When \(q\to0\), it is reduced to the latter usual RS algorithm; while when \(q\to1\) with proper scaling it should scale to directed random polymer model in <a href="http://arxiv.org/abs/0910.0069">(O’Connell 2012)</a>. When the input word \(w\) is a random walk:</p>
<p>\begin{align*}\mathbb P(w=v)=\prod_{i=1}^na_{v_i},\qquad\sum_ja_j=1\end{align*}</p>
<p>the shape of output evolves as a Markov chain with kernel related to \(q\)-Whittaker functions, which are Macdonald functions when \(t=0\) with a factor.</p>

            </div>
        </div>
    </body>
</html>