aboutsummaryrefslogtreecommitdiff
path: root/site/posts/2015-07-01-causal-quantum-product-levy-area.html
blob: a5cb446e67afd5aa51427263da7804468ad8a233 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
<!doctype html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>On a causal quantum double product integral related to Lévy stochastic area.</title>
        <link rel="stylesheet" href="../assets/css/default.css" />
        <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
    </head>
    <body>
        <header>
            <span class="logo">
                <a href="../blog.html">Yuchen's Blog</a>
            </span>
            <nav>
                <a href="../index.html">About</a><a href="../postlist.html">All posts</a><a href="../blog-feed.xml">Feed</a>
            </nav>
        </header>

        <div class="main">
            <div class="bodyitem">
                <h2> On a causal quantum double product integral related to Lévy stochastic area. </h2>
                <p>Posted on 2015-07-01</p>
                    <p>In <a href="https://arxiv.org/abs/1506.04294">this paper</a> with <a href="http://homepages.lboro.ac.uk/~marh3/">Robin</a> we study the family of causal double product integrals \[ \prod_{a &lt; x &lt; y &lt; b}\left(1 + i{\lambda \over 2}(dP_x dQ_y - dQ_x dP_y) + i {\mu \over 2}(dP_x dP_y + dQ_x dQ_y)\right) \]</p>
<p>where <span class="math inline"><em>P</em></span> and <span class="math inline"><em>Q</em></span> are the mutually noncommuting momentum and position Brownian motions of quantum stochastic calculus. The evaluation is motivated heuristically by approximating the continuous double product by a discrete product in which infinitesimals are replaced by finite increments. The latter is in turn approximated by the second quantisation of a discrete double product of rotation-like operators in different planes due to a result in <a href="http://www.actaphys.uj.edu.pl/findarticle?series=Reg&amp;vol=46&amp;page=1851">(Hudson-Pei2015)</a>. The main problem solved in this paper is the explicit evaluation of the continuum limit <span class="math inline"><em>W</em></span> of the latter, and showing that <span class="math inline"><em>W</em></span> is a unitary operator. The kernel of <span class="math inline"><em>W</em></span> is written in terms of Bessel functions, and the evaluation is achieved by working on a lattice path model and enumerating linear extensions of related partial orderings, where the enumeration turns out to be heavily related to Dyck paths and generalisations of Catalan numbers.</p>

            </div>
        </div>
    </body>
</html>